ON ABSOLUTE CONVERGENCE OF MULTIPLE
FOURIER SERIES

BY
S. MINAKSHISUNDARAM AND OTTO SZASZ

Introduction. The results of this paper are extensions of corresponding
results for simple Fourier series, given by one of the authors (cf. [5])(*). The
main problem was to study the relationship between the mean modulus of a
function f(x) and series of the typeZl c,.l B, >0, where the c, are the Fourier
coefficients of f(x). We obtain here analoguous results, employing spherical
means of a function of several variables. These means were first used by
Bochner [1] in the study of summation of multiple Fourier series.

A particular result is: if @y, . . ., are the Fourier coefficients of f(xy, - + -, x.),
and f satisfies a Lipschitz condition of degree @, then ) |ay,.. ..,I <L 0 for
g>2 x/ (k+20a), while the series may be divergent for 8 =2«/(x+2a). For some
pretruius results concerning the absolute convergence of double Fourier series
cf. [3].

1. Notations. We denote by capital letters vectors in the k-dimensional

space, 5o that X = (%1, %3, * * + , %), N=(n1, 13, - - - ,m); | N| = Q_ind) 2 is the
norm of N; NX =Z'{n,x, is the scalar product of V and X. The x4, - - -, %«
are real variables, the n,, - - -, n, are integers. f(x,, - - -, ) =f(X) is a real-

valued integrable function of period 27 in each variable. The formal Fourier
series of f(X) is

(1.1) f(X) ~ Z e E L R E cneNE,
n ny

where
1
1.2 f f X)e—iNXiX.
(1.2) = f(xX)e
J.(x) is the Bessel function of order u=0:
: (a/2+>

Ju(®) = g(— ) ety D’

we put
2:T(u + 1)Ju(2) o «*T'(u + 1)
= = - 1 v )
() - (=1 #IT(u+ v + 1)

Presented to the Society, April 27, 1946; received by the editors April 15, 1946.
() Numbers in brackets refer to the bibliography at the end of the paper.
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ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER SERIES 37

A.(X) = D cnexp (iNX), sothat f(X)~ iA,.(X).

|N|2=n n=0

We shall denote by w(¢) a positive function of £, decreasing to zeroas¢ | 0
2. Lemmas. We give here some auxiliary theorems.

LEMMA 1. If Ry(n) is the number of lattice points in the sphere J_1x3<mn,
then

2.1) R.(n) = O(n*'?) = On~/2, as n— o,

Actually the sharper estimate is known [cf. 2, p. 825]:

el 2yl
R(n) = m + Onste=D/20e+D)
LEMMA 2. For u=0, x real or complex,
au(x) = 200 + 1) " cos (x cos &) sin® tdi
2.2) T(e+ 1/2)T(1/2) Jo
T(u+ 1) i

€3z 08 ¢ gin% fdg,

T T+ 1/21(1/2) .

The proof follows on using the cosine series or exponential series and in-
tegrating termwise [6, pp. 47-48].

CoROLLARY. For real x
2T(s + 1) w12
M+ 1/2)T(1/2)Jo

For u=0, (2.3) reduces to | Jo(x)| =1, an inequality given by Hansen [6,
p. 31].

LeEmMMA 3. For any u>0 and a corresponding constant b(u) >0, b(u) <1
—a,(x) <2 for x>u; moreover

(2.3) | ()| =

sin® (dt = a,(0) = 1.

l—a“(x)>12—(:—2_l_—-l-)- for0 < x<m,
and
1 — a,(x) < (x/2)2 for x > 0.

p+1
Proof. From (2.2) and (2.3), putting 2I'(u+1)/T'(u+1/2)T'(1/2) =y (),
we have

/2
(2.4) 1—aux)= 'y(u)f {1 — cos (% cos t)} sin? it > 0 for x > 0.
]
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38 S. MINAKSHISUNDARAM AND OTTO SZASZ [January

It is known that J,(x)—0 as x— «, hence a,(x)—0; thus for some b(u) >0
1 — au(x) > b(u) for x > u.
Furthermore from (2.4) and (2.3)

x/2
1 — (%) < 2v(w) f sin® tdt = 2, for x > 0.
0
Finally, for 0<x <,
2x?
> —cos?t
. x w?
1 — cos (% cos ) = 2 sin? (— cos t)
2 x?

< — cos?¢,

hence
2 /2 2 1 1
1— au(x) > () x? f cos? ¢ sin® ¢dt = @) a2 { - }
w2 0 w2 v v+ 1)
xz
Tt 1)
and
x2 /2 x!
1— () < @) f cos? £ sin® tdf = ———;
0 4(u + 1)

this proves the lemma.
LEMMA 4. Let h be real, r>0, 6 >0, then the following statements are equiva-
lent:

(2.5) D athly(dn—) < o,
=l
2.5) 3 Drhy(5-272) < oo,
A=l
L] 1 ,
(2.6) f P lw (—) dt < &,
1 t
Proof. We have for 7k =1
-1
20-Drhy(5.2-Mr) < Z yh1p(5-pr) < Prh(§.2-0-Dr),
y=2A—1
hence

9—rh Z Prhgy(5-270) < Z nh=lw(5-n-r) < 2rh-E rhey(5-2707),

A=l n=l 0
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1947} ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER SERIES 39

with similar inequalities for 74 <1; hence (2.5) and (2.5’) are equivalent. We
also have for A <1

w1 n
f 2102 ")dx < n™lw(dnT) < 2162 ")dx,
n

n—1

hence

a6 ")dx < D, nlw(dnT) < f 2 lw(bx")dx,
1 0

J.

with similar inequalities for 72> 1; the substitution x"= 8¢ yields the equiva-
lence of (2.5) and (2.6). This proves the lemma.

In view of (2.6), r and § are not necessarily the same in the different state-
ments.

COROLLARY. The following statements are equivalent:
> =15 1% <
and
D Dhiz(5.27M%) < oo,
This follows on putting r=1/xin (2.5),and r=1/2in (2.5').

LeMMA 5. If a,=0, and r >0, then the two statements are equivalent:

0

2.7 > a,| 1 — a, (') |* = Ow(?) ast— 0,
1
and
(2.8) wrY va, + 2 a, = Ow(dn—1/%) asn— o,
1 n+1

0 being an arbitrary positive number.
Assume first that (2.8) holds; given >0 choose
n= |2 <8< n+41;

then from Lemma 3

n+1 2 ntl
> a,| 1 — a,(tv'/?) |" <—— > vra, = OB w(8(n + 1)~1/%) = Ouw(?),
1 4r(u+ 1) T

and
L)

a1l - e <2 f‘, a, = Ow(5(n + 1)=11%) = Ow(?).

n+2 n+2

Conversely, if (2.7) holds, choose for a given %z and §>0
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40 S. MINAKSHISUNDARAM AND OTTO SZASZ [January

¢t = min (xn~12, n~1/2),
then
n t?r n
; a.l 1 — V2 |r > m ; V7ay,
hence
n"? va, = Ow(t) = Ow(én=1/%),

Furthermore, using again Lemma 3, we have

> a.l 1 — au(t1/?) I' >b i a, (b a constant),

n+1 n+1
hence

i a, = Ouw(t) = Ow(Sn—1/?).,

n+l

This proves the lemma. It follows that if (2.8) holds for some §>0, it holds
forany 6>0.

LEMMA 6. Assume that for some 6>0

(2.9) > w627 n712) = Ow(én—1/%), asn— o,
by

and let r>0, a,=0; then the following statements are equivalent:

(2.10) wrY, Ve, + D a6, = Ow(én—112), n— o,
1 n+l
(2.11) nrY, v'a, = Ow(dn—11%),
1
(2.12) > |1 = au@?) |r = 0w(l), t— 0.

1

The equivalence of (2.10) and (2.11) follows from Lemma (2.5) in [5];
the equivalence of (2.11) and (2.12) follows from Lemma 5. This proves
Lemma 6.

LemMA 7. Young-Hausdorff inequality. If 1 <p =2, and
f(X) ~ 2" cv exp (iNX),
then
(2.13) { X enl 2112 < M) = Mo,
and |
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1947] ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER SERIES 41

Myfs Xlenl’,
where 1/p+1/p' =1, and

T

? . __}__ 4
Mof = Gy o lex

(cf. [4]).
Denote by f(X ; ) the spherical mean of f(X) over the surface of the sphere
of radius ¢ and center x; then [1, p. 177]

f(X; t) = (2‘5’)“,2 I‘(%) ff(xl + ke, Xt t&)dﬂs
(2.14) > cnau(t|N|) exp (iNX)

“ X o (it A,(), p=(x—2)/2;

n=0

o denotes the unit sphere £+ - - - +£=1, do; its (k—1)-dimensional vol-
ume element. Thus, putting f(X; ) —f(X) =¢(X; £), we have

$(X;8) ~ 2 en{ou(t| N|) — 1} exp iNX)
“- Eo {au(tn!?) — 1} 4,(2).

LeEMMA 8. If Mi¢(X; t) =0w(t) as t—0, then for any §>0

8
= 0w (-—- .
cN w(INI) asINI——)oo

It follows from (1.1), (1.2) and (2.14) that
onlant] W] = 1} = @n1(3) [ Tox: ) exp (= swvxrax,

hence
len||1 = au(t| N|)| S M:b(X; 8) = Ou(d).
Lemma 8 now follows from Lemma 3, on putting ¢| N| =4.
LEMMA 9. Let P,(2) =) 5¢,2°, 1Sp< 0 ;if

M,P.(z) <1 for | 2| =1,

then
M,P,)(z) Sn

(cf. [5, p. 385]).
Note. For p= o, M,P(z) =max | P(z)| for | 2| <1.
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42 S. MINAKSHISUNDARAM AND OTTO SZASZ [January

We shall frequently use Holder’s and Minkowski’s well known inequalities
for multiple series and integrals (cf. Hardy, Littlewood, and Pélya, Inequali-
ties, Cambridge, 1934).

3. A theorem on absolute convergence. We now present our main cri-
terion for absolute convergence.

THEOREM 1. If, with the notations of §2,1=p =2, f(X)EL,,

3.1 Mo(X; ) = Ow(t) ast—0,
and
(3.2) D n I wB(5n1e) < o for some B > 0,
1
then
(3.3) >lenlt < .
By (3.1) and Lemma 7 for 1 <p <2, |cn|? |1 —a,(t| N|)|# = 0w (8), or
(3.4) > o |1 = a(tm®|”= 00" (@),
1
where p,=p.(p) is defined by
o= 3 el = emeeon” (m+ -+ me=n).
INP=n

By Lemma §, (3.4) is equivalent to

7y e 4+ X =00,
1 n+l
hence
2n , , _
(3.5 > o =0a" (on 1/’).
n+l
By the Holder inequality for ¢>1,1/¢+1/¢' =1,
2n
o= X el s (Z|onlaya(E e
n aSIN|’S2n
let first 3<p’; choose
q ?’
Bg = ¢', hence ¢/ = ——=——.
= g—1 p' -8

Now, from (3.5) and (2.1)
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2n 8 ,
3" o = OwP(8n=112) (Ry(2n))1=817" = On(=8I2"el2B(5n~11%),

Putting n=2» A=0, 1, - - -, and summing over \ yields

> p: = 0 2e1-812")12,8(52-M?2) ;

1 A=0

the right side is convergent by the corollary to Lemma 4 (with A=«(1—8/p"))
and by (3.2). Hence (3.3) holds.

Next if B=p’>1, then (3.3) follows from (2.13), if we assume only, in-
stead of (3.1), that f(X) EL,; a fortiori

Slenlt< = for g = o'.
Finally let p=1; (3.2) becomes
(3.6) > WPfBnl) < o,

Denote by r.(n) the number of lattice points on the circle Y {x?=n; thus
or(¥) =R.(n).
From Lemma 8, for any §>0

> |ewlt =0 (| NI = Or(myt(on112);

IN *=n

furthermore from (3.6) and Lemma 4 (with A =«)
> nel16B(5n12) < e,
1

Now, using (2.1), we have

n n—1

zl: n(v)w"(éy—llz) = i R‘(V)wﬁ(av-lﬂ) —_ Z R‘(y)wﬁ(a(” + 1)..‘1/2)

n—1

S Rd(m)ef(3n21%) + 37 Ru(v) {oP(3r7112) — (3(v + 1)7117)}

n—1

= On*/1B(3n=11%) 4 03 w2 {WB(5v=11%) — WB(5(y + 1)~1/2)}
1

=0 i {ve12 — (v — )12} P(ov112)

= 0(1), asn— o,

This completes the proof of Theorem 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



44 S. MINAKSHISUNDARAM AND OTTO SZASZ [January

Actually we can prove for 8=p' that

EP:'IOgn < o,

4. Converse theorems. We give here two theorems to be employed iin
subsequent sections.

THEOREM 2. Let 1Sp=2; assume that

4.1) E w?(62 2012 = Qw?(dn—1/2), as n—» o,
and that
(4.2) ? o = On'w’(on”""), asn— o;
then

M,¢(X; ) = 0u(d), ast— 0.

Note. If p=1, p'= o, then M, means the effective upper bound of
]¢(X ; t)] in the region of X.
Proof. By Lemma 6, (4.2) is equivalent to

1/2

> o2l 1= an™) [ = 040,
that is, '
Zlenlr| 1= ault| N])|7 = 0wr(s).
Now from (2.14) and Lemma 7 (which holds also for p =1)
M,¢(X;8) = Ow(t) ast—0;

this proves the theorem.
Note that (4.2) means:

> | N|?| ex|? = Onrwr(sn—112),
INI*Sn

THEOREM 3. Assume that w(t) | 0 as ¢ | 0, and that

E wz(z—)\an—llﬂ) = sz(an_llz) as n— o,
A=l

Then a necessary and sufficient condition that
(4.3) Mqp(X; t) = Ou(t) ast—0,
is that
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(4.4 > v’p: = On’wz(an-m) asn— o,
1

First if (4.4) holds then (4.3) follows by Theorem 2 (for » =2). Conversely
if (4.3) holds, then from (2.14) and Lemma 7

ElcNI’I 1 -—a,.(tINl)|2=Ow’(t),

which by Lemma 6 is equivalent to (4.4).
5. Counter examples. For §=1, Theorem 1 becomes:

THaEOREM 1'. If M ¢(t) =0w(t) as t—0, and
(5.1) > w U () < o, 1592,
then
> I ch < o,
To show that this result is the best possible we shall prove:

THEOREM 4. Let w(t), in addition to having the property w(t) | 0 ast | 0, be
such that

(5.2) fl oY) dt = Ouo(i=1) s u— ,
while
(5.3) DU (1Y) = w, where1 < p < 2.
Then there exists a function f(X) EL,, such that
(5.4) M ¢(X; t) = Ou(t),
while ,

Xlex| = .

By Lemma 4 and its corollary (with k=«/p) (5.1) is equivalent to

3 2024527 < oo,
A==l

while (5.3) is equivalent to
(5.3) D 2M9(52X) = o,
We define ¢, =w(2-"5), \,=2r+14-n—2,

2n 2
(5.5) ga(2) = 2-n(+1/2") ( > z') , n=0,1,2---;

0
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so that
A1 — N = 271 4 1,

Construct the power series
G2) = Z( € — €nt1)(31- - - zu))‘”ngn(zv);
n=0 a1
then G(Z) has the formal power series

G2)=Y --- E'an-».z? oozt

ny=0 n =0

It is clear from the construction that yx=0; putting Z=1 we find

AN > 2 (€n — €nga) 2750 AHUPN (204 — )26 > 37 (6 — €ny1) 2507

ne=0 0
> f“ (€n — €mp1)257/?(1 — 2-4/7),
1 .
For a given integer I choose m so large that €;>2€m41, then
Z‘YN>’§"(1—2_‘“’)$€1\2‘”/’—>°° asl— o,

by (5.3’). Hence

2w = .

We next show that for z,=e#, v=1, 2, - - -, k, G(Z) becomes the Fourier
power series of a function F(X)&L,. Write

(5.6) Un(Z) = (en — €ns1)(31- - zx))"'H 8(2),
r=1
then for 2z, =¢%»

1 r 2N x/p
Mpun = (en —_ e“_'_l) —— 2—xn(1+1/p") (f {Z eve |2pdx)
-r 0

(27)"
LA n 2 «/
= 0(5" —_— €n+1)2_‘”(l+l/p') (f M ?dx) ?
0 x

= O(en — €3y1)2- P UHUPN2NCEPDKP = O(en — €ny1)
+ +

.7

hence, by Minkowski's inequality,

M,G £ > Myu, = 0(1).
ne=0
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We shall finally prove (5.4); we have

©

F(X;t) — F(X) = 2 {u(X;8) — w(X)},

»=0

hence My¢ 3,20 M, {4,(X; £) —u,(X) } =270 0421 = S1+Sy, say. Now, by
Minkowski’s inequality and (2.14),
r 1/p
dX)

M p“p(X H t) = P(&)z—:—&a:n( f

* 1/p
< P(;)z_.-l,m f ( f_ 'l (%1 + 1y o - o, x.+t£‘)|PdX) dog

= 2—1I‘(§)7|""/2 f M p(‘u,)ddg;

hence, if we use (5.7), Sz = O¢,. Furthermore

f’uv(xl + ko0, %t tet)ddf

M{u(X;8) — w(X)} < 2-11'(%‘)1-'/2 f Mo {u(X;8) — u(X)}dog;
from the mean value theorem
L ou,
(X3 t) — u(X) = 2, & — (X;6f), where0 <0 < 1;
=1 0m -
hence from Minkowski’s inequality

M (X ) — (X)) S 30| 6| M, 22 (x; o0
. A=l 2N

du, '
(X)doe.
2N

s oy [,
We now employ Lemma 9; thus from (5.5) and (5.6)

MP{“'(X; ) — “v(X)} = 10(& — &+1)(2" + \,) = 102(&, — €541).

It follows that

S1 =102 2(e, — e41) = Ot (271 — )¢,
0 0

= 0:2") (271 — 2)w(32-") = Ot f w(6x1)dx
0 [}

= 0f2"w(62~™),
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by (5.2). We now choose 7 so that for a given positive ¢ < §

2l Lo 5 27, n=1;
then
S1 = 0w(f), and S; = Ow(t),

and the proof of Theorem 4 is complete.
A simpler example, but of a special type, is

G(Z) = Z (Gn - en+l) z‘:l z:"gn(z’)-

6. The case p=2 and arbitrary 8>0. For the case p=2, Theorem 1 be-
comes:

THEOREM 1"'. If Myp(t) =Ow(t), and for some $>0
> wB2B(n1Y) < w,

Zlewlf < .

then

We now prove:

THEOREM 5. Let w(t), in addition to having the property w(t) L 0 as ¢t | 0,
be such that

6.1) fx uxw’(x“)dx = Ouw?(u™) asu— o,
while for a given positive B <2

(6.2) > B2 B(3n1e) = o,

Then there exists a function f(X) EL,, such that

(6.3) Mb(X; 8) = Ou(t), t—0,
but

2lenlt= .

We employ again the polynomial (5.5), where now p’=2, and the poly-
nomial (5.6), replacing the factor €, — €41 by

[ B (1/8
(en - e»+l) = Qny

say.
As before €,=w(82"). On writing

(6.4) G2Z) =X un(@) = X ynm -+ 5e

n=0
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we have again yy20. Now

T > T o2 —w-/:(i yn)

1 m ﬁ nx(l—p/z) s et/
(3 + 1)= ”z_:o (ﬁ + 1)‘ Z (e,. €nt1)2

—8/2) ) (n—1) (1—8/2)
> (21— 1)2 (e — emy)2" D OTPDE
1

Hence for €>2é,,,
T %(zx(x—p/z) — 1 ?eﬁzm—nu—a/z).
By the corollary to Lemma 4, (6.2) is equivalent to
(6.5) i 2B m o, or 32O
by

A==l

hence Y vi=

Next, in the same manner as in §5, one can prove that

(6.6) M3() = Oa;

it is easily seen that [5, formula (6.14)]

6.7 ot: = (eﬁ - ef.+1)m = O(G: - €:+1).
hence

M) = Z‘;M:(un) =0 (e — enyr) = O(1)..
Finally, to prove (6.3), write
Mip = S M) — (D)} = 5 + = = Ty + T,
0 0 n41

say. From (6.6) and (6.7), T:=0s, while, if we employ Lemma 9 (as in §5)

T, = tOE 22'01.2. = t20 Z 22'(4 - e,+1)

0
22v

tOZ &(2

-1 _» 2

277 = ;’o}: @ -22e
1

§~1gn
=70 xw’(&x'-l)dx = {0 f yo'(y )dy.
1

1
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Employing (6.1), we now get
Ty = £2022%,%(52-").

Given a positive ¢, choose 7 so that

2" L 8/t = 271,
then

= P02t = Ow?(f), and T, = Ow(i),

hence '

M19(t) = Ow(?) ast— 0.
This proves Theorem 5. |

Remark. The conditions (S 2) and (6.1) are equivalent (cf. [5, Remark

6.1]).
7. A continuous function as counter example. In [5, §6] we have employed

polynomials

2(g—1)

(7.1) g(z) = a,mz',~ ¢ a prime = 1 (mod 4),
=0 :
with the following properties
lg(x) | =1 for | z| < 1,
(Q)I—q ("+1)v ”=0’1s"')q—2-
On putting g(z,) - - - g(z) =2 byt - - - 2™, it follows that
Slonl > (1 > ¢ * "+ 2+ + @ - 1)
702 1 1 1 L4
(7.2) 7 — 1),
K + 1

Let 1<¢1<¢:< + + - be a sequence of primes congruent to 1 (mod 4),
and such that for all large n

(7.3) 21 < g, < 2%
denote by g.(z) the polynomial (7.1) with g=g¢,, and let
(7.9 M=0, Mn=2(q1+ - +¢qn) —n, nz1;

€n, 0y, and %, are defined as in §6. We assume that w(t) satisfies the conditions
of Theorem 5 and, in case 1 <8 <2, the additional conditions

(7.5) , j;“x“w(x—l)dx = j;l-r"w(‘r)dr < w,
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(7.6) f :x‘lw(x‘l)dx = f o' —Ya(r)dr = Ow(l) as 1 — 0.
Now, as shown in [5, §6],
(7.7 zz)zva, <2 fl " ()i,
and

- €ntl for0<B=1,
7.8 E“’ V2 [ steayin for1 < g < 2.

2n

We define as before

(7.9) G@2) = XD ua2) = Lwwz -+ 5
1
By (7.1)
(7.10) | 4a(2) | < am for |z = 1,---, 2] S 1,

hence the simple series in (7.9) converges uniformly and defines a continuous
_function in |21| =<1 -..., Iz‘l =<1. Putting z,=exp (ix,), v=1, - - -, &, (7.9)
becomes the Fourier power series of a continuous function F(xi, - -+, %,).
Furthermore, using (7.2) and (7.3), we have

.8 1 B —3xg/2 (B+1)
Dl > —Tauga (@a—=D" "
. k+ 175
>bY (eﬁ - ei+1)2”(1-’/2), b a constant,

and the divergence of this series follows from (6.2) as in §6.
We shall finally show that the modulus of continuity of F(X) is majorized
by w(t). We define the modulus of continuity of F(X) by

max max |F(X + H) — F(X)| = ¢,
H|St (X)

where IH | =2+ - - - +K)V2, and each x, varies in (—, 7). Now, in view
of (7.9),

|F(X 4+ H) — F(X)| £ 2| t(eitmth, - o . | eitzerho) — g, (eim, - - - ) |
1

= D =Vi+ V,,
1

n+1
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say. From (7.10) and (7.8)
[ 2€n for0<Bg =1,

©0

Va<2 < <
? ‘2 & lzf (a1t da for1 < g < 2;
2”
in view of (7.6) we have in either case
Va = Ow(62—7).

To estimate V,, we employ as in §5 the mean value theorem, and Lemma 9
for p= o, We then get

e (Bn) (B
and, using (7.7) and (5.2) (which is equivalent to (6.1)),
V1= 0| H| 2%(52-").
For | H| =t choose 7 so that 27~1<t~1<2», then
Vi=0w() and V;= Ow(f)
hence
£ = 0w(d).
We have thus proved the theorem:

THEOREM 6. If the assumptions of Theorem 5 are satisfied and if 0 <B =<1,
then there exists a continuous function F(X) with modulus of continuity
£(t) <w(t), while Y| cx| 8= . The same result holds for 1 <B <2 under the ad-
ditional assumptions (1.5) and (7.6).

As an example choose w(f) =%, 0 <a <1; it is seen easily that now (6.1),
(7.5), and (7.6) hold. Theorem 1’’ yields the convergence of Zl cN] f whenever
Myp=0t2, and if 8> 2k/(k+2a). For B=2k/(x+2a), however, there exists a
continuous function whose modulus of continuity is less than 22, while
en]t=w.

Closing remark. In a similar manner the convergence of the series
| V|| cx|® can be discussed. The mode of procedure applies as well to
Fourier integrals. We may also consider instead of the spherical mean (2.14)
the more general average

xin=2f (1~ 12—)Hf<x; re-tds,

tz

Finally, if we denote the linear operator which transforms f(X) into f(X; ¢)
—f(X) by Af(X; ¢), iteration yields

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1947] ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER SERIES 53

Amf(X; 8) ~ X en(au(t| N|) — 1)™ exp (iNX), m=1,23---,

and in Theorem 1 the assumption M,¢(X;t) = M, A1f(X; t) = Ow(t) can be re-
placed by M, Anf(X; t) =O0w(t).
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