An alternate sufficiency proof for the normal problem of Bolza
HTML articles powered by AMS MathViewer
- by Magnus R. Hestenes PDF
- Trans. Amer. Math. Soc. 61 (1947), 256-264 Request permission
References
- Gilbert A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946. MR 0017881
- M. R. Hestenes, Generalized problem of Bolza in the calculus of variations, Duke Math. J. 5 (1939), no. 2, 309–324. MR 1546127, DOI 10.1215/S0012-7094-39-00528-4
- Magnus R. Hestenes, The Weierstrass $E$-function in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 51–71. MR 17478, DOI 10.1090/S0002-9947-1946-0017478-X
- Magnus R. Hestenes, Theorem of Lindeberg in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 72–92. MR 17479, DOI 10.1090/S0002-9947-1946-0017479-1
- Magnus R. Hestenes, Sufficient conditions for the isoperimetric problem of Bolza in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 93–118. MR 17480, DOI 10.1090/S0002-9947-1946-0017480-8
- E. J. McShane, Sufficient conditions for a weak relative minimum in the problem of Bolza, Trans. Amer. Math. Soc. 52 (1942), 344–379. MR 6828, DOI 10.1090/S0002-9947-1942-0006828-2
- Franklin G. Myers, Sufficiency conditions for the problem of Lagrange, Duke Math. J. 10 (1943), 73–97. MR 7836
- William T. Reid, Isoperimetric problems of Bolza in nonparametric form, Duke Math. J. 5 (1939), 675–691. MR 100
Additional Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 61 (1947), 256-264
- MSC: Primary 49.0X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0020220-0
- MathSciNet review: 0020220