The $(\varphi ,k)$ rectifiable subsets of $n$-space
HTML articles powered by AMS MathViewer
- by Herbert Federer
- Trans. Amer. Math. Soc. 62 (1947), 114-192
- DOI: https://doi.org/10.1090/S0002-9947-1947-0022594-3
- PDF | Request permission
References
- A. Appert Mesures normales dans les espaces distancies, Bull. Sci. Math. vol. 60 (1936) pp. 329-352 and 368-380.
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), no. 1, 422â464. MR 1512414, DOI 10.1007/BF01451603
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Ann. 115 (1938), no. 1, 296â329. MR 1513189, DOI 10.1007/BF01448943
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Ann. 116 (1939), no. 1, 349â357. MR 1513231, DOI 10.1007/BF01597361 âOn the Kolmogoroff maximum and minimum measures, Math. Ann. vol. 113 (1936) pp. 416-423.
- A. S. Besicovitch, On the definition and value of the area of a surface, Quart. J. Math. Oxford Ser. 16 (1945), 86â102. MR 14415, DOI 10.1093/qmath/os-16.1.86 âOn tangents to general sets of points, Fund. Math. vol. 22 (1934) pp. 49-53.
- A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110â120. MR 16448, DOI 10.1112/jlms/s1-20.2.110 A. S. Besicovitch and G. Walker On the density of irregular linearly measurable sets of points, Proc. London Math. Soc. vol. 32 (1931) pp. 142-153. C. CarathĂ©odory Ăber das lineare Mass von Punktmengenâeine Verallgemeinerung des LĂ€ngenbegriffs, Nachr. Ges. Wiss. Göttingen (1914) pp. 404-426.
- D. R. Dickinson, Study of extreme cases with respect to the densities of irregular linearly measurable plane sets of points, Math. Ann. 116 (1939), no. 1, 358â373. MR 1513232, DOI 10.1007/BF01597362
- Samuel Eilenberg, Continua of finite linear measure. II, Amer. J. Math. 66 (1944), 425â427. MR 10969, DOI 10.2307/2371906
- Samuel Eilenberg and O. G. Harrold Jr., Continua of finite linear measure. I, Amer. J. Math. 65 (1943), 137â146. MR 7643, DOI 10.2307/2371777 Th. Estermann Ăber CarathĂ©odoryâs und Minkowskiâs Verallgemeinerungen des LĂ€ngenbegriffs, Abh. Math. Sem. Hamburgischen Univ. vol. 4 (1925) pp. 73-116. J. Favard Une dĂ©finition de la longueur et de lâaire, C. R. Acad. Sci. Paris vol. 194 (1932) pp. 344-346.
- J. Favard, La longueur et lâaire dâaprĂšs Minkowski, Bull. Soc. Math. France 61 (1933), 63â84 (French). MR 1504999, DOI 10.24033/bsmf.1197
- Herbert Federer, Surface area. I, Trans. Amer. Math. Soc. 55 (1944), 420â437. MR 10610, DOI 10.1090/S0002-9947-1944-0010610-1
- Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438â456. MR 10611, DOI 10.1090/S0002-9947-1944-0010611-3
- Herbert Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44â76. MR 13786, DOI 10.1090/S0002-9947-1945-0013786-6
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441â466. MR 15466, DOI 10.1090/S0002-9947-1946-0015466-0 J. Gillis Note on the projection of irregular linearly measurable plane sets of points, Fund. Math. vol. 26 (1936) pp. 228-233. âOn linearly measurable plane sets of points of upper density 1/2, Fund. Math. vol. 22 (1934) pp. 57-69. âA theorem on irregular linearly measurable sets of points, J. London Math. Soc. vol. 10 (1935) pp. 234-240. âOn linearly measurable sets of points, Comptes Rendus des SĂ©ances de la SocietĂ© des Sciences et des Lettres de Varsovie vol. 28 (1936) pp. 49-70. âOn the projection of irregular linearly measurable plane sets of points, Proc. Cambridge Philos. Soc. vol. 30 (1934) pp. 47-54. W. Gross Ăber das FlĂ€chenmass von Punktmengen, Monatshefte fĂŒr Mathematik und Physik vol. 29 (1918) pp. 145-176.
- Wilhelm GroĂ, Ăber das lineare MaĂvon Punktmengen, Monatsh. Math. Phys. 29 (1918), no. 1, 177â193 (German). MR 1548981, DOI 10.1007/BF01700486
- Felix Hausdorff, Dimension und Ă€uĂeres MaĂ, Math. Ann. 79 (1918), no. 1-2, 157â179 (German). MR 1511917, DOI 10.1007/BF01457179
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 O. Janzen Ăber einige stetige Kurven, ĂŒber BogenlĂ€nge, linearen Inhalt und FlĂ€cheninhalt, Inaugural dissertation, Königsberg, 1907.
- R. L. Jeffery, Sets of $k$-extent in $n$-dimensional space, Trans. Amer. Math. Soc. 35 (1933), no. 3, 629â647. MR 1501706, DOI 10.1090/S0002-9947-1933-1501706-6
- A. Kolmogoroff, BeitrĂ€ge zur MaĂtheorie, Math. Ann. 107 (1933), no. 1, 351â366 (German). MR 1512805, DOI 10.1007/BF01448898
- Lynn H. Loomis, Abstract congruence and the uniqueness of Haar measure, Ann. of Math. (2) 46 (1945), 348â355. MR 11713, DOI 10.2307/1969028 S. Mazurkiewicz and S. Saks Sur les projections dâun ensemble fermĂ©, Fund. Math. vol. 8 (1926) pp. 109-113. K. Menger Entwurf einer neuen Theorie des Masses, Ergebnisse eines Mathematischen Kolloquiums vol. 2 (1932) pp. 6-10.
- Donald S. Miller, CarathĂ©odory and Gillespie linear measure, Duke Math. J. 11 (1944), 139â145. MR 9620 H. Minkowski Ăber die Begriffe Lange, OberflĂ€che und Volumen, Jber. Deutschen Math. Verein, vol. 9 (1900) pp. 115-121. G. W. Morgan The density directions of irregular linearly measurable plane sets, Proc. London Math. Soc. vol. 38 (1935) pp. 481-494.
- Anthony P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944), 205â235. MR 9974, DOI 10.1090/S0002-9947-1944-0009974-4
- Anthony P. Morse, The role of internal families in measure theory, Bull. Amer. Math. Soc. 50 (1944), 723â728. MR 11107, DOI 10.1090/S0002-9904-1944-08223-2
- H. Federer and A. P. Morse, Some properties of measurable functions, Bull. Amer. Math. Soc. 49 (1943), 270â277. MR 7916, DOI 10.1090/S0002-9904-1943-07896-2
- A. P. Morse and John F. Randolph, The $\phi$ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236â305. MR 9975, DOI 10.1090/S0002-9947-1944-0009975-6
- Anthony P. Morse and John F. Randolph, Gillespie measure, Duke Math. J. 6 (1940), 408â419. MR 1832 G. Nöbeling Ăber den FlĂ€cheninhalt dehmingsbeschrĂ€nkter FlĂ€chen, Math. Zeit. vol. 48 (1943) pp. 747-771.
- Georg Nöbeling, Ăber die FlĂ€chenmasse im Euklidischen Raum, Math. Ann. 118 (1943), 687â701 (German). MR 10609, DOI 10.1007/BF01487395
- Georg Nöbeling, Ăber die topologische Struktur der rektifizierbaren Kontinuen, J. Reine Angew. Math. 184 (1942), 91â115 (German). MR 0009440, DOI 10.1515/crll.1942.184.91
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. I, Jber. Deutsch. Math.-Verein. 52 (1942), 132â160 (German). MR 9185
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. II, Jber. Deutsch. Math.-Verein. 52 (1942), 189â197 (German). MR 9186
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. III, Monatsh. Math. Phys. 50 (1942), 282â287 (German). MR 9187, DOI 10.1007/BF01792572
- L. Pontrjagin and L. Schnirelmann, Sur une propriĂ©tĂ© mĂ©trique de la dimension, Ann. of Math. (2) 33 (1932), no. 1, 156â162 (French). MR 1503042, DOI 10.2307/1968109
- Hans Rademacher, Ăber partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und ĂŒber die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340â359 (German). MR 1511935, DOI 10.1007/BF01498415
- John F. Randolph, CarathĂ©odory measure and a generalization of the Gauss-Green lemma, Trans. Amer. Math. Soc. 38 (1935), no. 3, 531â548. MR 1501827, DOI 10.1090/S0002-9947-1935-1501827-X
- J. F. Randolph, On generalizations of length and area, Bull. Amer. Math. Soc. 42 (1936), no. 4, 268â274. MR 1563283, DOI 10.1090/S0002-9904-1936-06287-7
- John F. Randolph, The Vitali covering theorem for CarathĂ©odory linear measure, Ann. of Math. (2) 40 (1939), no. 2, 299â308. MR 1503458, DOI 10.2307/1968919
- John F. Randolph, Some properties of sets of the Cantor type, J. London Math. Soc. 16 (1941), 38â42. MR 5887, DOI 10.1112/jlms/s1-16.1.38 S. Saks Theory of the integral, Warsaw, 1937. âRemarque sur la mesure linĂ©aire des ensembles plans, Fund. Math. vol. 9 (1927) pp. 16-24.
- Arthur Sard, The equivalence of $n$-measure and Lebesgue measure in $E_n$, Bull. Amer. Math. Soc. 49 (1943), 758â759. MR 8837, DOI 10.1090/S0002-9904-1943-08025-1 J. P. Schauder The theory of surface measure, Fund. Math. vol. 8 (1926) pp. 1-48.
- Seymour Sherman, A comparison of linear measures in the plane, Duke Math. J. 9 (1942), 1â9. MR 5890 W. Sierpinski Sur la densitĂ© linĂ©aire des ensembles plans, Fund. Math. vol. 9 (1927) pp. 172-185. H. Steinhaus Sur la portĂ©e pratique et thĂ©orique de quelques thĂ©orĂšmes sur la mesure des ensembles de droites, C. R. CongrĂšs des MathĂ©maticiens des pays Slaves, Warsaw, 1929, pp. 348-354. âZur Praxis der Rektifikation und zum LĂ€ngenbegriff, SĂ€chsische Akademie zu Leipzig, Berichte vol. 82 (1930) pp. 120-130. E. Szpilrain La dimension et la mesure, Fund. Math. vol. 28 (1937) pp. 81-89. A. Weil LâintĂ©gration dans les groupes topologiques et ses applications, ActualitĂ©s Scientifiques et Industrielles, vol. 869, Hermann, Paris, 1938. W. H. Young and G. C. Young The theory of sets of points, Cambridge University Press, 1906, chap. 13.
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 62 (1947), 114-192
- MSC: Primary 27.2X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0022594-3
- MathSciNet review: 0022594