The $(\varphi ,k)$ rectifiable subsets of $n$-space
Author:
Herbert Federer
Journal:
Trans. Amer. Math. Soc. 62 (1947), 114-192
MSC:
Primary 27.2X
DOI:
https://doi.org/10.1090/S0002-9947-1947-0022594-3
MathSciNet review:
0022594
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
A. Appert Mesures normales dans les espaces distancies, Bull. Sci. Math. vol. 60 (1936) pp. 329-352 and 368-380.
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), no. 1, 422â464. MR 1512414, DOI https://doi.org/10.1007/BF01451603
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Ann. 115 (1938), no. 1, 296â329. MR 1513189, DOI https://doi.org/10.1007/BF01448943
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Ann. 116 (1939), no. 1, 349â357. MR 1513231, DOI https://doi.org/10.1007/BF01597361 ---On the Kolmogoroff maximum and minimum measures, Math. Ann. vol. 113 (1936) pp. 416-423.
- A. S. Besicovitch, On the definition and value of the area of a surface, Quart. J. Math. Oxford Ser. 16 (1945), 86â102. MR 14415, DOI https://doi.org/10.1093/qmath/os-16.1.86 ---On tangents to general sets of points, Fund. Math. vol. 22 (1934) pp. 49-53.
- A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110â120. MR 16448, DOI https://doi.org/10.1112/jlms/s1-20.2.110 A. S. Besicovitch and G. Walker On the density of irregular linearly measurable sets of points, Proc. London Math. Soc. vol. 32 (1931) pp. 142-153. C. CarathĂ©odory Ăber das lineare Mass von Punktmengenâeine Verallgemeinerung des LĂ€ngenbegriffs, Nachr. Ges. Wiss. Göttingen (1914) pp. 404-426.
- D. R. Dickinson, Study of extreme cases with respect to the densities of irregular linearly measurable plane sets of points, Math. Ann. 116 (1939), no. 1, 358â373. MR 1513232, DOI https://doi.org/10.1007/BF01597362
- Samuel Eilenberg, Continua of finite linear measure. II, Amer. J. Math. 66 (1944), 425â427. MR 10969, DOI https://doi.org/10.2307/2371906
- Samuel Eilenberg and O. G. Harrold Jr., Continua of finite linear measure. I, Amer. J. Math. 65 (1943), 137â146. MR 7643, DOI https://doi.org/10.2307/2371777 Th. Estermann Ăber CarathĂ©odoryâs und Minkowskiâs Verallgemeinerungen des LĂ€ngenbegriffs, Abh. Math. Sem. Hamburgischen Univ. vol. 4 (1925) pp. 73-116. J. Favard Une dĂ©finition de la longueur et de lâaire, C. R. Acad. Sci. Paris vol. 194 (1932) pp. 344-346.
- J. Favard, La longueur et lâaire dâaprĂšs Minkowski, Bull. Soc. Math. France 61 (1933), 63â84 (French). MR 1504999
- Herbert Federer, Surface area. I, Trans. Amer. Math. Soc. 55 (1944), 420â437. MR 10610, DOI https://doi.org/10.1090/S0002-9947-1944-0010610-1
- Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438â456. MR 10611, DOI https://doi.org/10.1090/S0002-9947-1944-0010611-3
- Herbert Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44â76. MR 13786, DOI https://doi.org/10.1090/S0002-9947-1945-0013786-6
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441â466. MR 15466, DOI https://doi.org/10.1090/S0002-9947-1946-0015466-0 J. Gillis Note on the projection of irregular linearly measurable plane sets of points, Fund. Math. vol. 26 (1936) pp. 228-233. ---On linearly measurable plane sets of points of upper density 1/2, Fund. Math. vol. 22 (1934) pp. 57-69. ---A theorem on irregular linearly measurable sets of points, J. London Math. Soc. vol. 10 (1935) pp. 234-240. ---On linearly measurable sets of points, Comptes Rendus des SĂ©ances de la SocietĂ© des Sciences et des Lettres de Varsovie vol. 28 (1936) pp. 49-70. ---On the projection of irregular linearly measurable plane sets of points, Proc. Cambridge Philos. Soc. vol. 30 (1934) pp. 47-54. W. Gross Ăber das FlĂ€chenmass von Punktmengen, Monatshefte fĂŒr Mathematik und Physik vol. 29 (1918) pp. 145-176.
- Wilhelm GroĂ, Ăber das lineare MaĂvon Punktmengen, Monatsh. Math. Phys. 29 (1918), no. 1, 177â193 (German). MR 1548981, DOI https://doi.org/10.1007/BF01700486
- Felix Hausdorff, Dimension und Ă€uĂeres MaĂ, Math. Ann. 79 (1918), no. 1-2, 157â179 (German). MR 1511917, DOI https://doi.org/10.1007/BF01457179
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 O. Janzen Ăber einige stetige Kurven, ĂŒber BogenlĂ€nge, linearen Inhalt und FlĂ€cheninhalt, Inaugural dissertation, Königsberg, 1907.
- R. L. Jeffery, Sets of $k$-extent in $n$-dimensional space, Trans. Amer. Math. Soc. 35 (1933), no. 3, 629â647. MR 1501706, DOI https://doi.org/10.1090/S0002-9947-1933-1501706-6
- A. Kolmogoroff, BeitrĂ€ge zur MaĂtheorie, Math. Ann. 107 (1933), no. 1, 351â366 (German). MR 1512805, DOI https://doi.org/10.1007/BF01448898
- Lynn H. Loomis, Abstract congruence and the uniqueness of Haar measure, Ann. of Math. (2) 46 (1945), 348â355. MR 11713, DOI https://doi.org/10.2307/1969028 S. Mazurkiewicz and S. Saks Sur les projections dâun ensemble fermĂ©, Fund. Math. vol. 8 (1926) pp. 109-113. K. Menger Entwurf einer neuen Theorie des Masses, Ergebnisse eines Mathematischen Kolloquiums vol. 2 (1932) pp. 6-10.
- Donald S. Miller, CarathĂ©odory and Gillespie linear measure, Duke Math. J. 11 (1944), 139â145. MR 9620 H. Minkowski Ăber die Begriffe Lange, OberflĂ€che und Volumen, Jber. Deutschen Math. Verein, vol. 9 (1900) pp. 115-121. G. W. Morgan The density directions of irregular linearly measurable plane sets, Proc. London Math. Soc. vol. 38 (1935) pp. 481-494.
- Anthony P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944), 205â235. MR 9974, DOI https://doi.org/10.1090/S0002-9947-1944-0009974-4
- Anthony P. Morse, The role of internal families in measure theory, Bull. Amer. Math. Soc. 50 (1944), 723â728. MR 11107, DOI https://doi.org/10.1090/S0002-9904-1944-08223-2
- H. Federer and A. P. Morse, Some properties of measurable functions, Bull. Amer. Math. Soc. 49 (1943), 270â277. MR 7916, DOI https://doi.org/10.1090/S0002-9904-1943-07896-2
- A. P. Morse and John F. Randolph, The $\phi $ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236â305. MR 9975, DOI https://doi.org/10.1090/S0002-9947-1944-0009975-6
- Anthony P. Morse and John F. Randolph, Gillespie measure, Duke Math. J. 6 (1940), 408â419. MR 1832 G. Nöbeling Ăber den FlĂ€cheninhalt dehmingsbeschrĂ€nkter FlĂ€chen, Math. Zeit. vol. 48 (1943) pp. 747-771.
- Georg Nöbeling, Ăber die FlĂ€chenmasse im Euklidischen Raum, Math. Ann. 118 (1943), 687â701 (German). MR 10609, DOI https://doi.org/10.1007/BF01487395
- Georg Nöbeling, Ăber die topologische Struktur der rektifizierbaren Kontinuen, J. Reine Angew. Math 184 (1942), 91â115 (German). MR 0009440, DOI https://doi.org/10.1515/crll.1942.184.91
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. I, Jber. Deutsch. Math.-Verein. 52 (1942), 132â160 (German). MR 9185
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. II, Jber. Deutsch. Math.-Verein. 52 (1942), 189â197 (German). MR 9186
- Georg Nöbeling, Ăber die LĂ€nge der Euklidischen Kontinuen. III, Monatsh. Math. Phys. 50 (1942), 282â287 (German). MR 9187, DOI https://doi.org/10.1007/BF01792572
- L. Pontrjagin and L. Schnirelmann, Sur une propriĂ©tĂ© mĂ©trique de la dimension, Ann. of Math. (2) 33 (1932), no. 1, 156â162 (French). MR 1503042, DOI https://doi.org/10.2307/1968109
- Hans Rademacher, Ăber partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und ĂŒber die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340â359 (German). MR 1511935, DOI https://doi.org/10.1007/BF01498415
- John F. Randolph, CarathĂ©odory measure and a generalization of the Gauss-Green lemma, Trans. Amer. Math. Soc. 38 (1935), no. 3, 531â548. MR 1501827, DOI https://doi.org/10.1090/S0002-9947-1935-1501827-X
- J. F. Randolph, On generalizations of length and area, Bull. Amer. Math. Soc. 42 (1936), no. 4, 268â274. MR 1563283, DOI https://doi.org/10.1090/S0002-9904-1936-06287-7
- John F. Randolph, The Vitali covering theorem for CarathĂ©odory linear measure, Ann. of Math. (2) 40 (1939), no. 2, 299â308. MR 1503458, DOI https://doi.org/10.2307/1968919
- John F. Randolph, Some properties of sets of the Cantor type, J. London Math. Soc. 16 (1941), 38â42. MR 5887, DOI https://doi.org/10.1112/jlms/s1-16.1.38 S. Saks Theory of the integral, Warsaw, 1937. ---Remarque sur la mesure linĂ©aire des ensembles plans, Fund. Math. vol. 9 (1927) pp. 16-24.
- Arthur Sard, The equivalence of $n$-measure and Lebesgue measure in $E_n$, Bull. Amer. Math. Soc. 49 (1943), 758â759. MR 8837, DOI https://doi.org/10.1090/S0002-9904-1943-08025-1 J. P. Schauder The theory of surface measure, Fund. Math. vol. 8 (1926) pp. 1-48.
- Seymour Sherman, A comparison of linear measures in the plane, Duke Math. J. 9 (1942), 1â9. MR 5890 W. Sierpinski Sur la densitĂ© linĂ©aire des ensembles plans, Fund. Math. vol. 9 (1927) pp. 172-185. H. Steinhaus Sur la portĂ©e pratique et thĂ©orique de quelques thĂ©orĂšmes sur la mesure des ensembles de droites, C. R. CongrĂšs des MathĂ©maticiens des pays Slaves, Warsaw, 1929, pp. 348-354. ---Zur Praxis der Rektifikation und zum LĂ€ngenbegriff, SĂ€chsische Akademie zu Leipzig, Berichte vol. 82 (1930) pp. 120-130. E. Szpilrain La dimension et la mesure, Fund. Math. vol. 28 (1937) pp. 81-89. A. Weil LâintĂ©gration dans les groupes topologiques et ses applications, ActualitĂ©s Scientifiques et Industrielles, vol. 869, Hermann, Paris, 1938. W. H. Young and G. C. Young The theory of sets of points, Cambridge University Press, 1906, chap. 13.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 27.2X
Retrieve articles in all journals with MSC: 27.2X
Additional Information
Article copyright:
© Copyright 1947
American Mathematical Society