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1. Introduction. This note gives two entirely different methods of proof

of the following theorem and of certain of its extensions.

Theorem 1. Given a symmetric closed convex curve C in the plane, there

exists a parallelogram P circumscribed about C so that the midpoint of each side

of P is on C.

Both proofs allow extension to more than four sides. The first proof, by

means of the Poincaré ring theorem [l] (*), is restricted to the plane but al-

lows somewhat more general subdivision of the sides than simple bisection.

The second proof, by minimal area, extends the theorem to circumscribed

polyhedra of any number of sides in any number of dimensions.

The need for Theorem 1 first appeared in the course of some proofs of

properties of unit spheres in normed linear spaces [2]. The applications to the

problem which originally suggested Theorem 1 are clearer if, in a normed

linear space, x normal to y is defined to mean ||a;e+y|| ^\\y\\ for all real a; that

is, that the line through y parallel to Ox comes no closer to the origin than y.

This relationship in a Euclidean space is equivalent to orthogonality of x and

y; in other normed spaces it retains some of the properties of orthogonality

but is, in general, not symmetric [2, §6]. Theorem 1 asserts that in any two-

dimensional normed space there exist two points of norm one each normal to

the other. The generalization, Theorem 4.1, to « dimensions asserts that in

each n-dimensional normed linear space there exist n points x¡ such that

¿2i^ia¡Xj is normal to x,- for any choice of i = \, ■ ■ ■ , n and real numbers a/.

Translating this notion of normality in the obvious way to Finsler spaces

gives : Through every point P of an n-dimensional locally-Minkowskian Finsler

space there exist w hypersurfaces each normal at P to the intersection of all the

others.

2. Proof by the ring theorem. Throughout this section assume that C is

a closed convex (not necessarily symmetric) curve with no flat sides; that is,

that no line segment of positive length lies on C. (The general case of Theorem

1 is easily proved by approximation from this special case.) Choose a positive

direction, say counterclockwise, around C. Then for each point b outside or

on C there is a unique tangent line from b to C which passes in the chosen
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positive direction through a unique point b' on C. For any positive number X

define a transformation T\ of the exterior of C into itself by letting T\b be

the point on the given tangent from b extended past b' so that the ratio of

the distance from b' to T\b to the distance from b to b' is X. Then, when C is

symmetric, a point b is a corner of a parallelogram satisfying Theorem 1 if

and only if T2b= —b. To readjust this to a fixed point theorem let S be the

rotation of the exterior of C into itself through ir radians in the negative

direction. Then when C is symmetric b is a corner of a parallelogram satisfying

Theorem 1 if and only if ST\b = b. Theorem 1 is, therefore, a consequence of a

far more inclusive result.

Lemma 2.1. J/X,-, t = l, • • • , «, are positive numbers such that XiXj • • • X»

= 1, each of the transformations STuT\, ■ • ■ Fx„ (for w^2) and S2FxiFx,

' ' " T\n (for »^ 3) has a fixed point exterior to C.

We shall prove this by means of the Poincaré ring theorem which is

stated in G. D. Birkhoff's book [l,p. 165] as follows: Given a ring 0<a^p=£>

in the p, 6 plane (p, 6 being polar coordinates) and a one-to-one, continuous,

area-preserving transformation F of the ring into itself which advances points

onp=o and regresses points on p = &, then there will exist at least two points

of the ring invariant under F.

The proof given can easily be shown to hold as well for the unbounded

ring exterior to C, completed with an ideal circle at infinity. Since ||Fx&+X&||,

the distance from T\b to —Xi>, is precisely 1+X, Fx, as well as S, can be de-

fined continuously on this extended ring, so the transformations mentioned

in the lemma are homeomorphisms of this extended ring. For every X, T\b = b

for b on C, so ST\t ■ • ■ Fx„ turns points on C through — tt radians. Each Fx

turns points on the circle at infinity through +7r radians; hence, for w = 2,

«STx, • • • Fx„ turns points on the circle at infinity through (re —l)ir>0 radians.

Similarly, for n = 3, 52Fxi • • • Fx„ turns points on the circle at infinity

through (« —2)7T radians. Hence the ring theorem will prove 2.1 if it can be

shown that the given transformations are area-preserving. This is a simple

consequence of the following lemma.

Lemma 2.2. F distorts areas in the ratio X2:1.

Let (p, u) be "polar" coordinates for a point b exterior to C, defined so

that p is the distance along the tangent from b to C, p, is the inclination of that

tangent. It is easily shown that the area of the figure F bounded by curves

H=ni, u=ßi, p=pi, and P=p2, with 0^pi±Zp2<<x> and 0 ^¡u2—ni^2ir, is

(p2—pi)(u2 — ui)/2. (This is a very familiar formula if C is shrunk to a point.)

A similar computation with T\Fshows that its area is X2 times as great; since

every open set can be approximated by sums of such elementary figures, T\

multiplies all areas by X2.

From  this  lemma  and  the  assumption   Xi • •    Xn = l   it  follows that
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P\i ■ • • Px„ preserves areas. Since S obviously preserves areas, Lemma 2.1

follows from the ring theorem. Translated back to the discussion of polygons

the two conclusions of 2.1 give the following geometric results:

Theorem 2.3. If C is a closed convex curve with no flat sides and if\i ■ • • X„

= 1, »^3, then there exists an n-sided convex polygon P circumscribed about

C such that, counting from a properly chosen vertex, the point x¡ which divides

the ith side in the ratio X,:l is on C for i = l, ■ ■ ■ , n. If, moreover, C is sym-

metric and w^2, then a symmetric 2n-sided polygon with the same property

can be circumscribed about C.

Part of Theorem 1 is the symmetric case « = 2, \1=\2 = 1. To remove the

restriction that C have no flat sides, approximate a general symmetric closed

convex C by a sequence {Cr} with no flat sides. The parallelograms P„

attached to the curves C„ have a convergent subsequence whose limit fits in

the proper way around C. The only question which might arise here is of the

existence of a convergent subsequence. It is easily shown that if T\b = kb for

any negative k, then ||&|| <l+2/X; hence if & iß any corner of any P„, it lies

within a dilation of Ci to three times its original size. Compactness can then

be used to pick a convergent subsequence of the corners of the given sequence

{■P.}.
3. A special proof of Theorem 1. Using most of the steps of the proof of

the preceding section, a proof of Theorem 1 can be given in which the ring

theorem is avoided by finding a fixed point of ST2 directly. Begin by suppos-

ing that C has neither flat sides nor corners. Let <p(b) be the angle measured

in the positive direction between the half-ray from 0 to & and that from 0 to

T2b. The first step is to show that the equation </>(&) =7r has exactly one solu-

tion b(9) on the half-ray in the direction 6 from 0 and that ||&(0)|| <3. Define

Co= {b(d)\0=6<2ir} = {b\<b(b)=ir}; Co is closed and bounded; a compact-

ness argument proves that b(6) is continuous. It quickly follows that Co is

a simple closed symmetric curve.

By Lemma 2.2, T\ is area preserving. Hence T\Co must intersect Co at

some point fej; that is, there is a point 62 of Co such that T\bt = b\; by sym-

metry of Co and the fact that Co cuts each half-ray only once, it follows that

&i=r2t>2= — tV This means that ¿>2, Tibí, T\bi, and T\bi are the corners of a

parallelogram satisfying Theorem 1. Theorem 1 can now be proved by the

same approximation argument as before.

4. The minimal method. Theorem 1 is an immediate consequence of two

facts: Any such C has circumscribed about it a parallelogram of minimal

area, and any minimal P about C has the desired property. This can be

proved very simply in « dimensions as well.

Theorem 4.1. If Cn is a symmetric, closed, convex body in the Euclidean n-

space En, »^2, there exists an n-parallelopiped P" circumscribed about Cn in

such a way that the midpoint of each face of P" is ov C".
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There is an «-parallelepiped P" about Cn with minimal volume; it has

the desired property. If L,-, i= ±1, + 2, ■ ■ ■ , ±n, are the (re — 1)-dimensional

hyperplanes containing the faces, S±i, of P", and if F_< is parallel to Lit sup-

pose that the midpoint of the face S„ is not on C. Let L[, ¿ = 1, • • • , « — 1,

be parallel to Li and pass through the origin; then the intersection of all L[

is a line through the origin. Let p and — p be its points of intersection with

Cn. Draw parallel hyperplanes of support to Cn through p and — p enclosing

a new parallelopiped Qn; also draw the hyperplanes parallel to L„ but passing

through p and —p defining another parallelepiped Rn. Then Qn and Rn have

the same volume; since Ln does not pass through p or — p, the points ±p,

and hence all of R", lie inside Fn. Hence the volume of Qn is less than that of

P».
Theorem 2.3 in the special case Xi=X2 = • • • =X„ = 1 can also be proved

by the minimal method which, for this special choice of the X,-, adds the in-

formation that an «-sided polygon of the desired type exists if and only if

C is not itself a polygon of fewer than « sides. This result can also be extended

in part to » dimensions by means of the following lemma.

Lemma 4.2. Let C* be a bounded convex body in the k-dimensional Euclidean

space Ek and let Pk be a convex "polyhedron" of « faces circumscribed about Ck.

If S is a face of Pk such that the centroid p of S is not on Ck, then there is a con-

vex polyhedron II* circumscribed about Ck with smaller volume than that of Pk.

Here "volume" and "area" are the ordinary Lebesgue measures of ¿ and

¿ —1 dimensions. Let pi be the point of contact of Ck and S' which is nearest

to the centroid p of S, let L be the intersection of 5 with the hyperplane of

points equidistant from pi and p. Then L does not touch C or p so 5 can be

rotated about L through a small angle 6 to a position S(6) which does not

touch Ck. Since the moment M of 5 about L is not zero, for small 6 the de-

crease in volume due to replacing 5 by S(6) is approximately M tan 6. Let

II* be circumscribed about Ck and have a face parallel to S(9) replacing S;

then the volume of IT* is still smaller than that of the polyhedron with face

S(6). If 6 is small enough IT* has the same number of faces as P*.

From this lemma comes a great extension of Theorem 1 to polyhedra of

many faces in higher dimensions.

Theorem 4.3. Let Ck be a symmetric closed convex body in the k-dimensional

linear space E and let n be an integer not less than k. If P is a symmetric convex

polyhedron of 2« sides circumscribed about C* with minimal volume, then the

centroid of each face of P* is on Ck.

Deleting symmetry gives the usual analogues. As in the plane it is clearly

sufficient for existence of a P* of 2« sides with minimal volume that C not be

a polyhedron of less than 2« sides. Hence this is a sufficient condition for

existence of a P* with the centroid of each face of P* on Ck. However, the ex-
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ample of a regular octahedron around a cube shows that C* may have fewer

sides than P* and still have the midpoint of each side of Pk on Ck.

Added in proof. A theorem of a recent note of Taylor [3] gives an alterna-

tive proof of Theorem 4.1. He selects from all those parallelopipeds for which

the centers of the faces are in or on C one of maximal volume, and then shows

that it is circumscribed about C. If C is an octohedron, Taylor's proof gives

for P the cube whose face centers are at the corners of C, while the circum-

scribed parallelopipeds of minimal volume (there are many) have one-fourth

the volume of the cube.
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