Dimension and measure
HTML articles powered by AMS MathViewer
- by Herbert Federer
- Trans. Amer. Math. Soc. 62 (1947), 536-547
- DOI: https://doi.org/10.1090/S0002-9947-1947-0023325-3
- PDF | Request permission
References
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441–466. MR 15466, DOI 10.1090/S0002-9947-1946-0015466-0
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR 22594, DOI 10.1090/S0002-9947-1947-0022594-3
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- L. Pontrjagin and L. Schnirelmann, Sur une propriété métrique de la dimension, Ann. of Math. (2) 33 (1932), no. 1, 156–162 (French). MR 1503042, DOI 10.2307/1968109 S. Saks Theory of the integral, Warsaw, 1937. E. Szpilrajn La dimension et la mesure, Fund. Math. vol. 28 (1937) pp. 81-89. A. Weil L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, vol. 869, Hermann, Paris, 1938.
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 62 (1947), 536-547
- MSC: Primary 27.2X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0023325-3
- MathSciNet review: 0023325