Dimension and measure
Author:
Herbert Federer
Journal:
Trans. Amer. Math. Soc. 62 (1947), 536-547
MSC:
Primary 27.2X
DOI:
https://doi.org/10.1090/S0002-9947-1947-0023325-3
MathSciNet review:
0023325
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441–466. MR 15466, DOI https://doi.org/10.1090/S0002-9947-1946-0015466-0
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR 22594, DOI https://doi.org/10.1090/S0002-9947-1947-0022594-3
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- L. Pontrjagin and L. Schnirelmann, Sur une propriété métrique de la dimension, Ann. of Math. (2) 33 (1932), no. 1, 156–162 (French). MR 1503042, DOI https://doi.org/10.2307/1968109 S. Saks Theory of the integral, Warsaw, 1937. E. Szpilrajn La dimension et la mesure, Fund. Math. vol. 28 (1937) pp. 81-89. A. Weil L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, vol. 869, Hermann, Paris, 1938.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 27.2X
Retrieve articles in all journals with MSC: 27.2X
Additional Information
Article copyright:
© Copyright 1947
American Mathematical Society