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BY

HERBERT FEDERER

1. Introduction. The relations between topological dimension and Haus-

dorff measure were discovered by Szpilrajn. (See [SZ], [HW, Chapter

VII ](').) An earlier paper by Pontrjagin and Schnirelman contains related

results, though the connection is not explicit. (See [PS].)

According to Szpilrajn, the dimension of a separable metric space X does

not exceed m, dim X^m, if and only if X has a homeomorph FCAîm+i

such that the (m + l)-dimensional Hausdorff measure of F equals zero,

3C^m+i(Y) =0. In the present paper it is shown that the foregoing statement

remains true if the Hausdorff measure ¡KSÍh is replaced by the integral geo-

metric Favard measure JZit+i, or, in fact, by any measure which lies between

the Favard measure and the Hausdorff measure, in a sense which is made

precise in §11. Hence practically all the definitions of ¿-dimensional measure

over «-space, which may be found in the literature, are equally suitable from

the point of view of topological dimension theory.

These results yield new information about the structure of sets of finite

Hausdorff measure, which is so intimately tied up. with integral geometric

measure (see [F5, 9.7]). Suppose SCl(A)< oo and B is the set of all those points

of A at which A is not (3Cj|, k) restricted, which means that A fails to have a

/fe-dimensional approximate tangent plane in a suitable sense. Then Szpilrajn's

theorem implies that dim B ^dim A^k. However, since J*(B) =0, the results

of this paper imply that dim B=£ —1. This inequality is the best possible.

A formula is proved, which expresses the ¿-dimensional Favard measure

of a subset of »-space, in terms of the »»-dimensional Favard measures of its

intersections with (n — ¿+w)-dimensional planes, asan integral over the set

of all these planes.
To save space, we refer the reader for most of the definitions to [F5].

However, the greater part of this paper may be read without much familiarity

with [F5].
2. Definitions. In addition to some of the terms and notations described

in [F5, §2], we shall have use for the following:

p(S) is the number (possibily °o ) of elements of S.

If k <n are positive integers, then p* is the function on En to Ek such that

Pn(x) = (Xi, Xi, ■ ■ ■ , xk)    for    x G A»,
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and 77Í is the function on £,* to E„ such that

Vniy) = iyi, y», • ■ ■ , y«, 0, • • • , 0) G En   for   y G Et.

If 5 and / are positive integers, x£E,, y(E.Et, then

(xo y) = (xi, • • • , x„ yi, • • ■ , yi) G E,+t.

The inverse of the function / will be denoted by inv/.

For the notions of topological dimension theory we refer the reader to

[HW].
3. The group of distance preserving transformations of »-space. Let

Mn be the set of all distance preserving transformations of E„. Thus/GAf„

if and only if / is such a function on En to E„ that \f(x)—f(y)[ = |x—y\

whenever xGEn and yÇzEn. We metrize Mn by the function p, which is de-

fined by the formula

Pif, g) = I /(«) - g(0) I + sup   I f(x) - f(8) - g(x) + g(6) I,

where fGMn, g(E.Mn, and 8=(0, • • • , 0) is the origin of E„.

Next let

Gn = Mn n E [f(e) = e]
f

be the set of all orthogonal transformations of E„, and associate with each

point xÇ.En the translation

(x +) G Mn

by means of the relation

(x +)(y) = x+ y   for   yGEn.

We recall that the sets Mn and Gn are groups with respect to the operation,

:, of superposition, and that each element/of Mn has a unique decomposition

f=[(x+):R]   with   xeE„,RGGn.

If g is another element of Mn with the decomposition

g= l(y+)-s] with yeEn,secn,

then

P(f,g) = \x-y\+ p(R, S),

and

(f-g)= {[(x + R(y))+]:(R:S)\.

Hence the map of the cartesian product space (EnXG„) onto Mn, which
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associates [(x+):A] with (x, R), is a homeomorphism, though not a homo-

morphism of the direct product of the groups En and Gn into the group Mn.

4. The space of 5-dimensional flat subspaces of «-space. Let AJ, be the

set of all 5-dimensional flat subspaces of En. Let

z\ - En r\ E [xi - 0 for * - 1, 2, • • • , » - s]
X

and let w'n be the function with domain JIZ„ and range AJ such that

«•»(/) = f*(z'n)    for   / G Mn.

The maximal sets of constancy of the function ir„ are the left cosets of the

closed subgroup of Mn whose elements are those members / of M„ for which

f*(Z'„)=Zn. In view of the usual method of assigning a topology to homo-

geneous spaces, it is natural to give the set A£ a topology by imposing the

condition that

trn is an open continuous mapping.

We next define the function W„ on the cartesian product (G„XEn~i) to

A^ by the formula

\'n(R, w) = *4R:[vr'(w) +]}

for AGG„, wGAn—
Clearly Xi is continuous.

From the relation

(x +)*(z'n) =  [(C':pn~')(x) +]*(Z'n)    for    X G En

we infer that the range of \'„ is A„.

Now let 8 be the function on A£ such that b(u) equals the distance of the

set p from the origin 0 = (0, • • • , 0) of £„. Clearly (5:ir'„) is continuous. There-

fore 5 is continuous. From this and the relation

5 [\'n(R, w) ] = | w |    for   R G G», w G An-,

we infer that:

A set ACAi is compact if and only if the set [inv X„]*(A) is bounded and

closed.

We now associate with each (suitably restricted) function F on A„ the

number ^„(F) by the formula

*'«(F) = f    f     F[K(R, w)]d£n-.wd<pnR,
Jo„J *„_

and use the relation
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{S:(x+)}*[An0rc, w)] = \'n{(S:R), [pi ':inv R](x) + w),

for SGC, xGE„, i?£G„, w(E.En-„ to verify that ^ is invariant under the

transformations of A„ by the elements of Mn. Furthermore |^b(E)J < °o

whenever F is continuous and vanishes outside some compact subset of A„,

and y„(F)>0 whenever F is continuous, nonnegative, and does not vanish

everywhere.

It is well known (see [W, p. 45]) that these properties determine Wn, up

to a constant factor, on the class of all continuous functions on A„ which

vanish outside some compact set, and even on the class of all those functions

on A„ under which each closed set has an analytic counterimâge. (See [SSI,

pp. 47-50].)
5. The integralgeometric measure. If A is an analytic subset of En, and

k is a positive integer less than n, then the integralgeometric ¿-dimensional

Favard measure of A is given by the formula

7*04) = ß(n, kf1-  f    f  p[AC\ C\r, y)]dJlkydpnR.
J OnJ Ek

To show that this formula is a consequence of the definition given in

[F5, 2.18], we apply the two relations

7*04) = ß(n, kf1- f    f   N[(pl:R), A, y]d£kydpnR,
J QnJ Et

N[(pkn:inv R), A, y] = p[A H ^(R, y)]   for   REGn,yG Ek.

The first of these formulae was proved in [F5, 5.11], while the second is

verified by the computation :

xr*(E,y)= {R:[¿(y) +]}*(0
= R*{EnnE [pt(x) = y]) =Enr\E [|/»*:inv R}(z) = y].

This proves our assertion.

We further recall that

and now define J° by the formula

7ñ(¿) = p(A)    for   A C £n.

6. Another formula for the invariant integral. Suppose m <k <n are posi-

tive integers.

Let
n-k+m*

X>   =  Vn K-tLn-k+m).

=-c.
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Since (n — k+m) + (n—m)—n = n — k, each flat space juGAS-™ satisfies

exactly one of the three conditions :

(1) (BZ»=0,
(2) (Bn^GAT*.
(3) the linear dimension of (Bi\p.) exceeds (n — k).

Let c be the function on AJ~m such that

c(p) = 0   if   (1) or (2) holds,

c(p) = 1   if   (3) holds.

Statement 1. Wm(c) =0.

Proof. Let/be the function on G„ such thatf(Q) is the determinant of the

matrix whose columns are

Pi...   ■ J-«.«.   Qn-k+m+lt . .  .  , Ç»,

whenever CGC«. Here Z is the unit matrix in G„. Let

5 = GBn|[/(Q) = 0].

In order to show that

>t>n(S)   =  0,

we note that / is an analytic function on the analytic Lie group G„, that S

contains neither component of G„, and appeal to the following general

proposition :

If the set of zeros of an analytic function on an analytic Lie group inter-

sects a component of the group in a set of positive Haar measure, then it contains

that component.

This follows from the fact that all the coefficients of the power series van-

ish at every point of density of the set of zeros.

Next we see that

c[Cm(Q, z)] = 1   implies   QGS,

because (3), with p=~K~m(Q, z), implies that the points

I1, • ■ ■ , /*-»*-, Qm+1, ■ ■ • , Q"

fail to span £„.

Consequently

*rm(c) =  Í    f   c[\Tm(Q, zÏÏdjfadtnQ
J OnJ Em

nc[\n~m(Q, z)]djZmzd<l>nQ = 0.
¿m

This completes the proof of Statement 1.
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Next we associate with each function u on A£lî+m the function ü on A„-m

by the formulae

*0) = «[pTk+m*(B r\u)]  if  (e n M) G a:-*,

«(m) = o if  (EnM)GA"~*.

Statement 2. If u is such a numerically valued function on AJli+m /Ac/

each closed set has an analytic counterimage under u, then

ß(n - k + m, m)%Tm(ü) = ß(n, »)*«^í+-,(«).

Proof. Let fi(«) =^'*~m(«) for each function u of the type just described.

If /GAf„_jfe+ro, then gE.Mn, where

g(x) = hn       :/:/>«       J(x) + x-1j?„       :/>„       J(x)   for   i££„

and we have

n— *+m n—i+m _»—\ „

(/>».     :g) = if:pn       ),       g*(B) = B,
t/        i*\       B— *+m* l r, n—t+m* .

«•(unri-sn^w  for mGaP,

[«:/*]{^r*+m*(EriM)} =à{/»r*+m*[Eng*(M)]} for MGArm,

(«:/*) = («:**),       «(«:/*) = n(«).

Thus Q is invariant under the transformations of A„l£+ra by the elements

Of Mn-k+m.

In order to show that | Q(u) | < oo whenever « is continuous and vanishes

outside a compact set, and that fl(w) >0 if u is continuous, nonnegative, and

does not vanish everywhere in A^Zl+m, it will suffice, by virtue of the uniform

structure of AHIÎ+»,, to exhibit a function u with the following properties :

0 < 0(«) < »,

« is nonnegative,

E [«(f) è l] has interior points,
t

E [«(f) > 0] has a compact closure.
{

To do this, let

A = Em O E [ | x< | < 1 for i = 1, 2, m

m*

»(m) = p[»)„ 04) H y.] for   m G A„    ,

«(f) =p[w+m*04)nf]    for   ÉGA^llf,,
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Then «(¿j) = l for all £ sufficiently near ZnZl+m, and u(%)=0 whenever

the distance of the subset £ of £„_*+„, from the origin of £„_*+„, exceeds m112.

Furthermore

.   . r    m *y ..   Ä      n—k+m*,n   _       . -,

u(p) = p k-*+» U ) r\ p„      (A r\ a) ]

= P[nT(A)r\Br\p] = v(p)

whenever (1) or (2) holds. Hence

ü(p) = v(p)    whenever    c(p) = 0,

and we use Statement 1 to infer that

ß(w) = *B    («) = *„    (v) = ß(n, m)Jn [vn (A)]

= j3(«, m)2   = ß(n, m)Jn-k+m[yn-k+m (A)]
n—k

= [ß(n, m)/ß(n - k + m, »»)]*„_*+„,(«).

Thus « has the required properties, 0 is a multiple of ^¡J-t+m, and the

factor equals [ß(n, m)/ß(n — k+m, m)].

This completes the proof of Statement 2.

7. The invariance of the Favard measure under an injection.

Lemma. If m<k<n are positive integers, and X is an analytic subset of

An-i+m, then

Jn Un (X)]   =  7n-i+m(A).

Proof. Let u be the function on AnIÎ-^„ such that

«(£) = P(X H 0    for   £ t C-l+m,

and let v be the function on AB-m such that

Km) = p[vl~   m(X)r\p]     for     mGA"-™.

We associate ü with « as in §6, and define the function c as in §6. Then we

check that

ü(p) = v(p)   whenever   c(p) = 0,

and use Statements 1 and 2 of §6 to infer that

ß(n, m)% [„n (X)] = ¥„    (v) = *n    (Ü)
n—k

= ß(n, m)y„-k+m(u)/ß(n — k + m, m)

= ß(n, m)J™-k+m( X).
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The proof is complete.

8. A new formula for the Favard measure.

Theorem. If », k, m are positive integers, m<k<n, and A is an analytic

subset of E„, then

k ß(n — k + m, m)    r    r m r n-k+m
7»^> - a,    v. • %[AC\\l   +m(R, w)\dJ^-mwd*nR.

ß(n, k) Jo.Jg^

Proof. Let g be the element of G„ such that

g(x) = (x„_*+m+i, • • • , x„, xi, • • • , xn-k+m)   for   x G E„,

let

n—k+m

f =   (g'Vn ),

and associate with each 5GC„_i+m the function 5GGB by the formula

Si*) = {>-""(*) o [S:p7k+m:inv g](x)}    for    x G E„.

The remainder of the proof is divided into three parts.

Part 1. 7/EGG„, S£.G„-k+m, w^Ek-m, zGEm, then

\n-k[(R:S), (woz)] = {R:[vTm(w) + ]:f}*[CiU^, «)]■

Proof. It is easily verified that

(S:t) = (r.S),

[f :(*+)]= {[r(*)+]:f}    for   x G EB_*+m,
*---      a— w k—m

iQ-rln      )   =  Vn for      Q£.Gn-k+m,

{'Jn   "(«>) +   [f:C-*+m](z)}   =  1|»(«»0.),

f   (Zn—k+m)  — Zn

Using these relations we infer that

[R: hk-m(w) +]:t:s: [C*t-W + ]}*(CIh.)

= {E: [vTm(w) +]:5:f: [Cib+»(*) +]}*(z"Z*+m)

= {E:S: [(inv $:-^(») +]: [(f:-l^-)(*) + ]\*(£~")

= [E:5: {[tfc-(») + (?:-:_*+-)(*)] +} 1*(C*)

= {(E:5):[1?n(Wo2)+]}*(0

-C*[(E:5), (»o.)],

This proves Part 1.

Part 2. If EGCr„, wGE*_m, /Ac»
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ß(n-k + m, m)j7[A C\ K~k+m(R, w)]

=   f (    p{AC\ \Tk[(R:S), (WO*)]} dJ&d.Pn-k+mS.
JGn^HlnJ Bm

Proof. Let/= {R: [vl~M(w) + ] : f}, note that/ is a univalent function with

domain £„_*+- and range XÜ_t+m(A\ w), and define

X= {inv/}*[^nCt+m(A,te»)J.

Since

/={A:k*-m(w)+]:g:Ct+m}.

we may use the invariance of J™ under the transformations of Mn, together

with Lemma 7, to infer that

jZ[a n xri+m(A, w)] = 7:[f*(A-)] = y:[C+m*(x)] = 7:-*+=«.

From Part 1 we see that

p [x n xZlUcs, Z) ] - p {/* [a n x::ï+m(5, z) ]}
= p{An\n-k[(R:-S), (woz)]\

whenever SGGB_*+m, zG£m. It follows that

ß(n-h + m, m)7Z-k+m(X)

= f ( p{AnC"[(R:S), (woz)]}djLZmzd<pn-k+JS.

This proves Part 2.

Part 3.

ß(n, k)Jkn(A) = ß(n - k + m, m)

f  f    y:[Ar\\7k+m(R,w)]dJZk-mwd<i>nR.
J anJ *»_„

Proof. Using 5 and Part 2, we compute

ß(n, k)Jk(A) - f    f p[in X7*(*. y)]¿Gy<zV„A

" f f    f    (      p{^^xr*[(A:5),(a«oZ)]}iO_wdC»z^B^^-l+-S
^ 0»-*+- J OnJ BnJ Bn-m

=  f    f      ß(n- k + m, m)Jn[A C\ xT^R, w)]dJ¡^.mwd4>KR.
J anJ Bh-m
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The proof is complete.

9. Dimension and Favard measure.

Theorem. If s and » are integers, «>0, O^s^«, and J'„(A)=0, then

dim A as — 1.

Proof. We fix » and use induction in s.

Let S be the set of all integers s for which there is a set A with J'n(A) =0

and dim .¡4 «is.
Assume that 5^0, and let k be the least integer in S. The proof that this

assumption leads to a contradiction is divided into three parts.

Part l.k>0.
Proof. Otherwise k = 0 and there is a set A for which

dim A è 0,       jW(A) = 0.

Then p(A) =0, A =0, dim A = -1.
This contradiction proves Part 1.

Part2.k = n.
Proof. Otherwise Part 1 implies 0 <k <n, and, since every set is contained

in an analytic set of equal Favard measure, there is an analytic set A for

which

dim A ^ k,       7*04) = 0.

The theorem of §8 implies that

f    f   JkT1[AnC1(R,w)]dJZiwdpnR = 0.
J ff„ J El

Letting U be the set of all EGG„ for which

jTx[a r\ \7\r, w)]djdiw = o,
Bi

we infer that

Pn(Gn -U)   =  0.

Next choose such members lQ, 2Q, • • • , *Q of G„ that

CQY = V   for    i = 1, 2, • • • , «.

Here 7 is the unit matrix of G„.

Since

p„{Gn - E [(R:<Q) <= U]} =0   for    i = 1, 2, • • • , n,

we conclude that

/J B
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(R:<Q)eU   for   i = 1, 2, • • • , «

for <pn almost all RÇ=.Gn.

It is easily seen that

Xb"\t, w) = En Pi E [x* V1 = w]
X

whenever FGGB, wGZEi-

We now pick RQ.Gn such that

(R:iQ) G C   for    i = 1, 2, • • • , «

and use the relation (A:'0l = A' to infer that

7t'1{Ar\E[x'Rl= w]\ =0

for ^i almost all w in Ei, ií i is an integer between 1 and «.

Therefore the (« — 1)-planes of the type

EnC\E [x'R* = w],
X

which intersect A in a set of (¿ —l)-dimensional Favard measure zero, con-

tain all the faces of arbitrarily small cubical neighborhoods of each point of

En. Hence the boundary of each of these cubical neighborhoods intersects A

in a set of (k — l)-dimensional Favard measure zero, whose topological dimen-

sion does not exceed (k — 2), because k is the least integer in S.

It follows that

dim A :£ k — 1.

This completes the proof of Part 2.

Part 3. k^n.

Proof. Otherwise there is a set A for which

dim A = »,       .£B(-4) = 0.

Hence A both contains, and does not contain, a nonvacuous open subset.

This completes the proof.

Remark. An alternate proof of Part 3 runs somewhat like the proof of

Part 2. Fubini's theorem may be used to construct an appropriate grating of

(» —l)-planes.

10. Application to sets of finite Hausdorff measure. Suppose k<n are

positive integers, A is an 3CB measurable subset of E„, and 3C„(4) < oo. Then

A = AiKJAi,

where ^4i is the set of all points of A at which A is (3CÜ, k) restricted, and

^2=^4—^4!.
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As in [F5, 9.7] we infer that JÏ(Ai) =X*(Ai), ft(A,)=0.
Therefore 7n+1(-^i) —0, and Theorem 9 assures us that

dim Ai ¡S k,       dim A2 i% k — 1.

These inequalities are the best possible, for each pair (k, »).

11. The general relation between dimension and measure. Suppose p

is any double sequence of measures with the following properties:

(i) If k and n are integers, n>0, O^k^n, then p* is a measure over E„.

(ii) IfKtn(A)=OlthenPl(A)=0.
(iii) IfPn(A)=0,thenJ*n(A)=0.
Here 3^(A)=Jn(A)=p(A) for ACEn.
Then we may use one half of Szpilrajn's theorem, namely [rlW, Theorem

VII 4], together with the theorem of §9 of this paper, to conclude:

If X is a separable metric space, then

dim X i% m

if ana only if X has a homeomorph Y such that

Y C E2m+1,       P?£i(Y) = 0.

The conditions imposed on p are satisfied by most definitions of measure

which can be found in the literature. In particular, we may take p„ to be any

one of the seven measures S n, 3Cn, Gn, $*> T*, Ç„, Jn discussed in [F5, 2.18].

This shows that all these measures are equally suitable from the point

of view of dimension theory.
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