An indirect sufficiency proof for the problem of Bolza in nonparametric form
HTML articles powered by AMS MathViewer
- by Magnus R. Hestenes
- Trans. Amer. Math. Soc. 62 (1947), 509-535
- DOI: https://doi.org/10.1090/S0002-9947-1947-0023465-9
- PDF | Request permission
References
- William T. Reid, Isoperimetric problems of Bolza in nonparametric form, Duke Math. J. 5 (1939), 675–691. MR 100
- E. J. McShane, Sufficient conditions for a weak relative minimum in the problem of Bolza, Trans. Amer. Math. Soc. 52 (1942), 344–379. MR 6828, DOI 10.1090/S0002-9947-1942-0006828-2
- Franklin G. Myers, Sufficiency conditions for the problem of Lagrange, Duke Math. J. 10 (1943), 73–97. MR 7836
- Magnus R. Hestenes, The Weierstrass $E$-function in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 51–71. MR 17478, DOI 10.1090/S0002-9947-1946-0017478-X
- Magnus R. Hestenes, Theorem of Lindeberg in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 72–92. MR 17479, DOI 10.1090/S0002-9947-1946-0017479-1
- Magnus R. Hestenes, Sufficient conditions for the isoperimetric problem of Bolza in the calculus of variations, Trans. Amer. Math. Soc. 60 (1946), 93–118. MR 17480, DOI 10.1090/S0002-9947-1946-0017480-8
- Magnus R. Hestenes, An alternate sufficiency proof for the normal problem of Bolza, Trans. Amer. Math. Soc. 61 (1947), 256–264. MR 20220, DOI 10.1090/S0002-9947-1947-0020220-0 A. L. Lewis, Sufficiency proofs for the problem of Bolza in the calculus of variations, Dissertation, The University of Chicago, 1943.
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 62 (1947), 509-535
- MSC: Primary 49.0X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0023465-9
- MathSciNet review: 0023465