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1. Introduction. In this paper we wish to investigate the nature and

existence of bounded solutions of systems of differential equations of the

form

N

(1.1) dzi/dt = 2 o,ii(t)Zj + fi(zi, Zi, ■ • • , zN, dzi/dt, dz2/dt, • • • , dzN/dt, t),
j-i

i=l,--- ,N.

The variables zx, z2, • • • , Zg are real, and t ranges over the interval

(0, œ). The/,- will be subject to various conditions, but all will share the

common property that

(1.2) | fi(zi, Z2, • • ■ , ZN,  W,    Wi, ■ • ■  , WN, t) |   = 0 Í   2 | Z* |  + | Wk |   1,

as 23i-i lz*l +|«'t|—»0, for fixed /.
Systems of the form (1.1) are of considerable interest in dynamics, and

play an important role in many branches of applied mathematics. Usually the

right-hand side does not involve any derivatives. In dynamics, where t repre-

sents the time, a natural problem is the determination of the behavior of the

solutions for large values of the time, and this is the central problem con-

sidered in the paper. The behavior of the solution turns out to depend

critically upon the initial values, and thus the question becomes one of

stability in the sense of Liapounoff.

A solution, 5, is said to be stable in the sense of Liapounoff if every solu-

tion, s', whose initial values are "close" to those of 5 remains "close" to s for

all subsequent values of /. The word "close" is defined by a suitable metric.

If the two solutions are given by z¿, z[, i = 1, 2, • • • , N, the distance between

them will be taken to be ]C£-i |z< — z«' I • Ln our case, since fi(0, 0, • • • , 0, t)

= 0, Zi = 0, i = l, 2, ■ • • , N, is a solution of (1.1). Letting a< = Zi(0) be the

initial values of any other solution of (1.1), we shall show that provided that

Sí¡-i Ia«!  's sufficiently small this solution remains small for all t>0.

This investigation, for the case where the /¿ are power series in the z*

beginning with second degree terms, and the a¿y are constants, was initiated

by Poincaré, and pursued extensively by Liapounoff. Subsequent researches
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are due to Bohl, Cotton, and Perron [10, ll](l), where references are given.

Perron [lO] obtained the following precise result:

Theorem 1 (Perron). Consider the following system of differential equa-

tions

(1.3) dzi/dt = 2^, aijZj + /.-(zi, z2, ■ ■ ■ , zN, t), i = 1, 2, • • • , N,
>=i

where

(1.4) (1) All the characteristic roots of the constant matrix A = (a,-y) have nega-

tive real parts,

(2)     | fi(zi, z2, ■ • • , zN, t) | = o I   2~11 z* I )   as _C I z* I -* 0>     uniformly in t.
\ k-l / t=l

Under these conditions, any solution of (1.3) whose initial values are suffi-

ciently close to the zero solution is uniformly bounded for all t, and tends to the

zero solution as t approaches infinity.

Perron's result is very elegant and satisfying as to the qualitative be-

havior of the solutions, but does not furnish quantitative information. The

method of proof used by Perron does not require that one actually exhibit

any particular solution, or discuss its behavior for large t. While the standard

existence theorems ensure the existence of solutions of (1.3) under reasonable

conditions on the /,-, the form of the solution obtained in the course of the

proofs seems clearly unsuited to the determination of its asymptotic behavior,

even though we are forearmed, by means of Theorem 1, with the knowledge

that it must tend to the zero solution as t—*+ °°.

In this paper we intend to generalize Theorem 1 to cover equations of the

form of (1.1), and to state corresponding results for the case where all the

characteristic roots of the matrix A = (at;) merely have nonpositive real

parts. Also, we shall discuss the situation where A is a variable matrix.

Perron [ll] also considered this problem and obtained results under condi-

tions upon A different from ours. Here the results are necessarily more frag-

mentary.

Several methods will be used, two depending upon explicit representation

of the solution as the limit of a sequence, and thus available for numerical

calculation, and one merely guaranteeing the existence of solutions of the

desired type. Both methods involving sequences require the existence of the

partial derivatives of /,- with respect to zi, z2, • ■ ■ , zjv, dzi/dt, dz2/dt, • ■ ■ ,

dzw/dt, and then conditions'on these derivatives. However, for the equation

in (1.3) one method dispenses with these restrictions.

In a written communication to the author, Levinson has stated that the

(l) Numbers in brackets refer to the references cited at the end of the paper.
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result corresponding to Theorem 1 will hold for the equation of (1.1) also. But

again his method of proof is similar to Perron's in that it does not furnish

any hold on the quantitative behavior of the function for large t. The ad-

vantage of the methods used in this paper lies in this ability to represent the

solution in a form exhibiting its behavior.

In the second part of the paper, we consider difference equations of the

type

N

Zi(t + i) = 5_ *itf)*M

(1.5)
+ U(zi(t), ■•■ , ZN(t), Zi(t + 1), • • • , ZN(t + 1), t),

i= 1, 2, • • • , A;/ = 0, 1, •• • .

Ta Li [14] and Perron himself [12] applied the methods of Perron to obtain

results for difference equations of the above class similar to Theorem 1. In

treating (1.5), our method developed for differential equations seems much

simpler than that of Ta Li's, and again has the advantage of illustrating the

behavior of the solution in direct fashion. In addition to the analogue of

Theorem 1, we derive some new results.

In the first part of the paper we introduce the principal method of the

paper, the conversion of the differential equation into a suitable integral equa-

tion. This method originated with Liouville and has furnished a very powerful

means of obtaining the asymptotic behavior of the eigenfpnctions and eigen-

values of differential equations. This method was used by the author [l],

Levinson [7], and Weyl [15], to discuss the stability of linear differential

systems. The integral equations used to prove existence theorems of the

ordinary type are much weaker instruments of research when it comes to

determining asymptotic behavior.

We shall now sketch the method. Let y denote a column vector whose

components are yi, y2, ■ ■ • , ytr. Then the equation of the first approximation

N

(1.6) dyt/dt = £ •Ofh Í = 1, 2, • • • , A,
/-i

can be written more simply as

(1.7) dy/dt = Ay

where A is the coefficient matrix (a<y(t)). Similarly, (1.1) can be written

(1.8) dz/dt - Az+ f(z, dz/dt, t)

where z and f(z, dz/dt, t) are respectively column vectors with the com-

ponents Zi and fi. Now let Y be the NXN matrix satisfying the equation

(1.9) dY/dt = AY,       7(0) = Z.
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Every column of F satisfies (1.6). It is now easy to show that the solution of

(1.8) satisfying the boundary conditions z(t<¡) =y(ti), y(t) satisfying (1.7), is a

solution of the integral equation

(1.10) z(t) = y(t) + f   FWF-K/O/iz, dz/dti, k)dtu
J 'o

The method of successive approximations is now used to show that a

solution of (1.10) exists and possesses the desired properties, under various

hypotheses on A and f(z, dz/dt, t). The sequence defined by recurrence

zo = y,

(l.ii) r'
Zn+i = y + I    F^F-^iXftz«, dzjdk, ti)dti, n^O,

is shown to converge uniformly. In this way, the classical results of Poincaré-

Liapounoff concerning nonlinear systems are obtained together with more

recent results of Hukuwara concerning linear systems.

Equation (1.10) furnishes a link between the solutions of (1.6) and (1.8)

which suffices in the majority of cases to exhibit the connection between the

behaviors at infinity of the solutions of the two equations.

The method of successive approximations is not powerful enough in some

cases. To treat these cases, two other methods are available. When dz/dt

does not occur on the right-hand side of (1.1) an extension of the Birkhoff-

Kellogg fixed-point theorem, due to Hukuwara [6], can be used. Regarding

(1.8) as an equation of the form z = T(z), it is easy to verify that T(z) satisfies

the conditions of the theorem. While the method fails to exhibit the solution,

and generally yields no information as to uniqueness (except for one case

where it can be combined with the standard existence theorem to yield

uniqueness), it seems worthwhile to include it, since it furnishes an interesting

proof of existence and boundedness simultaneously. The second method will

be discussed later.

In the second part of the paper the difference equations

(1.12) Az = z(t + I) - z(t) = Az(t) + f(z(t), z(t +l),t), t = 0, 1, • • • ,

are discussed by means of the recurrence relation

(1.13) z(t) = y(t) + ¿ YW-^k + l)f(z(k), z(k + 1), k)
k—t

connecting the solutions of

(1.14) Ay = ,4 y

and those of (1.12). F is a matrix analogous to that defined for differential

equations.
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The theory is considerably simpler for difference equations when z(t + l)

does not appear on the right-hand side. Since z(t+l) is given in terms of z(k),

to^k^t—l, induction can be effectively used. If z(/ + l) does appear, we use

the method of successive approximations again.

Applying the results obtained for difference equations, we shall sketch the

second method applicable to differential equations, a method which requires

no stronger restrictions than those imposed by the fixed-point methods, and

yet furnishes a constructive proof of the existence, and may be used for

calculations. Approximate (1.1) (considering only z and t appearing on the

right-hand side) by the difference equation

(1.15) z(t + h) - z(t) = hAz(t) + hf(z, t).

The theorems obtained for difference equations show that for h small the

solutions of (1.15) are bounded for all t, t = 0, h, 2h, ■ ■ ■ . Functions defined

for all t can be obtained by defining their values to be linear in between these

points. It is easy to show that these functions are equicontinuous, and if we

consider any finite interval, Arzela's selection theorem can be used. It is true

that this method only proves the existence of a convergent sequence, which

is a subsequence of a larger sequence, but practically, convergence could

always be recognized numerically.

The methods described above have proved applicable to a large class of

nonlinear partial differential equations, of which the following is one type

¿)2m      d2u      32m      du
(1.16) —- + —+ —-=F(u, x, y, z, t),

dx2      3ys      <3z2      dl

under various types of boundary conditions restricting the space variables,

x, y, z, to a finite region, and J to the semi-infinite interval (0, «>).

We hope to discuss these results in a subsequent paper.

The author wishes to take this opportunity to express his appreciation to

Professor Lefschetz who first introduced him to the researches of Poincaré

and Liapounoff, and whose continued interest in the topic of the paper, and

many conversations with the author, have proved a source of great stimula-

tion.

Part I. Differential equations

2. Preliminary lemmas. Consider the differential equations

N

23 aii(t)zj + fi(zi, ■ • • ,zN, dzi/dt, ■ ■ ■ , dzN/dt, t),
j-i

i - 1, 2, • - • , N,
¿V

Z a-u(t)yi, i - 1, 2, ■ • • , N.
i-l

dzi/dt =
(2.1)

(2.2)  dyi/dt



362 RICHARD BELLMAN [November

Comparing the two systems, two viewpoints are possible. One may regard

(2.2) as the original equation, and (2.1) as a perturbed equation, or one may

reverse roles, and regard (2.2) as an approximate equation, and (2.1) as the

original. Mathematically, there is no distinction, as almost always the proper-

ties of the simpler equation will be investigated first.

The latter point of view originated with Poincaré in a series of papers on

curves satisfying differential equations. The former point of view, for the

case where the/,- are linear forms in the zk, is also intimately connected with

pioneer work of Poincaré, and has a long history behind it. This will not be

discussed here. We mention Perron [10], Hukuwara [6], and Cesari [$], for

results and references.

Notation. Statements and proofs are simplified considerably if vector-

matrix notation is used in dealing with systems of differential equations.

Capital letters, A, B, ■ • • , X, 7, will denote matrices; small letters with-

out subscript will denote column vectors. Positive constants whose exact

values are not necessary for the proof will be denoted by t\, c2, and so on.

The components of y will be denoted by y*, and the elements of A by a,y.

The norm of a vector and a matrix are defined as follows:

(2.3) IMI-ZUI.     IMI-SI ««I-t-i i.i-i
It is easily verified that

n ,.       b + 4 s Ml + Ml.    M + *II = MII+NI.
(   } M ¿Mil Ml. \M\ = Mil NI-

A vector function, y(f), or a matrix function, Y(t), is said to be bounded if

its norm is bounded as f—♦ *>. Similarly it is said to tend to zero as t if its

norm tends to zero. The terms continuous, equi-continuous, and so forth

can be defined in terms of the norm, and the definitions are as for ordinary

functions of one variable.

The system (2.1) can now be written

(2.5) dz/dt = Az+ f(z, dz/dt, t),

where z is the column vector whose components are z*, A is the matrix (a<y),

and /(a, dz/dt, t) represents the column vector whose components are the /<.

Usually the elements of A will be constants. If not, they will be assumed

to be well-behaved functions, continuous over any finite interval. Weaker

conditions could be imposed, but as we are principally interested in the

behavior of the solutions at infinity, there seems to be no point in discussing

finite singularities.

When A is constant, the behavior of the solutions of

(2.6) dy/dt = Ay
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at infinity is completely determined by the nature of the characteristic roots

of A. The principal subject of the first part of the paper will be the influence

of A,f(z, dz/dt, t), and the initial conditions upon the behavior at infinity of

the solutions of (2.5).

The vector equation, (2.6), has N linearly independent solutions,

:y<l>, ym, ■ • • » yw. These JV linearly independent solutions can be chosen

so that the NXN matrix, Y, whose columns are the y(*\ satisfies the initial

condition, F(0) =1. It is clear then that F satisfies

(2.7) dY/dt = AY,        F(0) = /.

Any other nonsingular solution of (2.7) is of the form YC, where C is a

nonsingular constant matrix.

The following uniqueness result will be required occasionally. We state it

as:

Lemma 1. If each component of Az+f(z, t) is continuous, and satisfies a

Lipschitz condition for the z* lying in a finite domain, D, of the (zt, t) space,

and if (zo, to) is in D, and zi(t), z2(t) are two solutions of (2.5) in an interval

about k such that Zo=Zi(ti)=z2(ti), then Zi(t)=z2(t).

A fundamental characteristic of this paper is the conversion of the dif-

ferential equation into an integral equation. This device, introduced by Liou-

ville, brought into prominence this important type of integral equation. The

procedure for converting the differential equation into the required form is

discussed in the following lemma.

Lemma 2. The solution of

(2.8) dz/dt = Az+ w(t),       z(h) = y(k),

where y(t) is a solution of dy/dt—Ay, is

(2.9) z = y + f   Y(t)Y-1(ti)w(k)dk.

If A is a constant matrix, this reduces to

(2.10) z = y + f   Y(t - h)w(ti)dtu

In the applications that will be made of this lemma, w will contain the

unknown function, z, and thus (2.9) will be an integral equation.

Proof. Although the result is well known, the proof will be given for the

sake of completeness. It is obtained by the method of variation of parameters.

Let z = Fm. Then

(2.11) Y'u + Yu' = AYu+w
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or

(2.12) m' = Y-lw,       m = v+ f   Y~lwdh,
J h

where v is the first column of the identical matrix, Z. Thus

(2.13) z = y + f   Y(t)Y-Kh)w(ti)dti.
J h

If A is constant, 7(/-*i) = Y(t) Y~l(ti). For when A is constant, 7(í-íi)

is a solution of (2.7) equal to Z at i = <i, and simultaneously 7(i)7-1(z"i) is a

solution of (2.7) satisfying the same boundary condition. Hence both coincide,

column by column.

3. The characteristic roots of A all have negative real parts. The main

result of this section is contained in the following theorem.

Theorem 2. Consider the differential equation

(3.1) dz/dt = (A + B)z + Bidz/dt + f(z, dz/dt, t),

where

(3.2)  (1) The characteristic roots of A have all negative real parts,

(2)
(3)

(4)

P>\\ áci, ||Z?i|| SïCi, Ci depending upon A,

»0, uniformly in t,

->0, uniformly in t.
df(z, w, t)/dzk\\=o(l) as \\z\\+\ w

df(z, w, t)/dwk\\ =o(l) as \\z\\+ \w
Under these conditions, there exists an N-dimensional manifold of solutions

of (3.1) which approaches 0 as t—>oo.

If the right-hand side of (3.1) does not contain dz/dt, every solution of (3.1)

whose initial values are close enough to the zero solution is uniformly bounded

for all t^O, and approaches 0 as t—*&>.

Proof. Let y be the solution of

(3.3) dy/dt = Ay,        y(0) = y„,

where the order of magnitude of ||y0|| will be prescribed below. We shall choose

z to have the initial value yo. We first show that ||y(/)|| <Cs||3'o||, t^to^O,

where c3 is a constant depending only upon A. The solution of (3.3) can be

expressed as y = 7(2)yo. Thus ||y|| ¿|| Y(t)\\ ||y0|| ^Cs||yo||, since in consequence

of (3.2) (1), ||7(0|| is bounded.
Using Lemma 2, we now convert (3.1) into the integral equation

/" f ' dz(ts)
Y(t - ti)B(ti)z(ti)dh + |    Y(t - ti)Bi(ti) —— dh

o J o dt

W ,t
+ |    Y(t - ti)f(z, dz/dh, ti)dh.

J o
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A solution of this integral equation will be a solution of (3.1) with the

initial value z(0) =y(0) =yo. If we show that a bounded solution of (3.4) ex-

ists, under the assumptions of (3.2) and with ||z(0)|| small enough, we shall

have demonstrated the existence of the required iV-dimensional manifold,

since we can choose y= 23tLia*y<*) where the y(i> are N linearly independent

solutions of dy/dt = Ay, and Z^-il0*! ,s sufficiently small. The N constants

a¡¡, k = l, 2, • • • , N, generate the manifold of solutions.

We now use the method of successive approximations to obtain a solution

of (3.4). Define a sequence of vector functions as follows:

zo = y,

(3.5)
Zn+i = y + I    Y(t- ti)B(ti)zndh + j    Y(t - ii)5i(/i) —- dh

Jo Jo dt

+ f   Y(t- ti)f(zn, dzn/dti, ti)dh, n ^ 0.
J o

The conditions imposed upon A show that not only does ¡| Y\\—->0 as /—><»,

but also /0°° || F(m)||<ím< «>. This becomes clear when we realize that each

element of F is a sum of terms of the form eu(P(t) cos pt+Q(t) sin pt) where

P(t) and Q(t) are polynomials of degree at most N— 1, and X, p. correspond to

the characteristic root \+ip, with X <0.

The first step in the proof will be to show that the z„ and dz„/dt are uni-

formly bounded, provided that ||z(0)|| is sufficiently small. Set C4 = c3||y0||. We

have ||zo||=||y||gc3||yo||=c4, and ||<fz0/¿/|| =|Mzo|| £\\A\\ ||z0|| <||^||c4. Let us

now assume that ||zit||á2c4, ¿=0, 1, • • • , «, and show that this also holds

for ra + 1; similarly we assume that ||¿Zi/¿í|| g3||-4||c4, k=0, 1, • • • , n, and

show that this holds for n + l. We have

lk+i|| á ||y|| + fV«-/Oil ||2K*i)|l 11*1
J o

(3.6) + f  \\Y(t - ti)\\ \\Bi(ti)\\ \\dzjdk\\dti
J o

+   f    \\Y(t - ti)\\\\f(Zn, dZn/dh, ti)\\dtu
J 0

In consequence of conditions (3) and (4) of (3.2), we have

(3.7) 11/*., ^,  t)\ ^ co(\\zn\\ +   ^\) á (2ci + S\\A\\cùct
\\  \        dt       / II \ dt 11/

where c« is a constant that can be made as small as desired by starting with

||z„||+||ázB/<¿/|| sufficiently small. Thus, from (3.6), there results
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||s»+i|| á ci + f   \\Y(t - ti)\\ ||5(<1)||(2e4)d/i
J o

+ f   ||7«-íi)||||5i(/i)||(2c4)¿/i
J o

+ f'\\Y(t- ti)\\(2c4 + 3\\A\\c¿c¿ti
J o

á c« + 2c4r2ci J   ||K(M)||d«"l + 2c4(l + 3M||) J""||F(«)||¿«

á 2c«

provided that ci and c« are sufficiently small. To obtain the bound for dzjdt,

we observe that the recurrence relation (3.5) is equivalent to the recurrence

relation

(3.9) dzn+i/dt = Azn+i -f Bzn + Bidzjdt + f(zn, dzjdt, t).

Thus

||dW*|| g MU ||z„+i!| +1|*|| ||z„|| + nuji \\dzjdt\\
(3 10) + II/(2b' dZn,dt' °"

g 2Mlk + 2cic4 + Ci(3MN + (2c + 3M||cO«è
û 3|M||e4.

We can fix the sizes of \\B\\ and J|Z5i||, and thus of e%, and we can choose the

magnitude of the initial value, ||yo|f, so as to make ci the right order of magni-

tude. Thus we have shown that the bounds are uniform in » and z.

The next step is the standard one, namely to prove the convergence

of 53n-o (Zn+i—Zn). We shall consider the majorizing series ^»-o (||z„+i — Zn||

+\\dzn+i/dt-dzn/dt\\). We have

||Zn+l - Z»||   = f     Y(t - ti)B(ti)(Zn - Zn-i)dh
\\i.J 0

(3.11) + (   Y(t - ti)Bi(ti)(zn - zH-.i)dh

+ f   Y(t - ti)(f(zn, dzjdh, ti)
Jo

— f(zn-i, dzn-i/dh, ti))dti     .

Thus
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||zB+1 - fc|| g f '\\Y(t - k)\\ II W|| Ik - z*-i\\dk
J 0

(3.12) + f   llF«-/i)||||5i(/i)||||zB-zn_i||áíi
^o

+ cfjnt - m (i|z„ - z„_iii +11^- - d-^\)dti.

From conditions (3), (4) of (3.2) it is seen that ci can be made as small

as desired by choosing the bounds on z„ and dzn/dt small enough. These

bounds in turn depend upon z(0) =y(0), and thus are at our disposal. We also

have

dzn+i/dt - dzjdt = A(zn+i - z„) + f(zn, dzjdt, t)
(3.13)

whence

(3.14)

From (3.11) we obtain

||z„+i — z„|| á  max ||z„ — z„_i

— /(z„_i, dzn-.i/dt, t),

\\dzn+i/dt - dzJdtW á PU ||zB+1 - «4|

+ Ci (||z„ - z„_i|| + ||dz„/ dt - dzn-i/dt\\).

(3.15)

^2ci f\\Y(u)\\du + c, Jj|F(«)||d«]

max \\dzn/dt - dzn-i/dt\\   c7 I    ||F(m)||¿m  .
og«,si L  J o J

0á<,Sl

+

Using this estimate and (3.13) we obtain

dzn+i     dzn

dt dt

(3.16)        g \c, + (2ci + c7)\\A\\ f"||F(«)||¿«l max  ||z„ - zB_,||
L Jo Jo^i,â<

+ L + C7NI r"||y(«)||á«l max l~--~
L J o J oá«,á< II dt di

Adding (3.16) and (3.15), we have the desired result

(3.17)

Til II     ,        dZn+l        dzn
max    ||zB+i — zB|| -f-

oáíjáiL dt dt IIJ

^ c2 max    \\¡
oáí.áíL

«-i   +
dzn dZn-1 H

dt dt   |J
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where c» will be less than 1, if a, c-i, and c% are small enough. Thus the major-

izing series 2^1'-o [\\zn+i — Zn\\+\\dz„+i/dt — dz„/dt\\] converges, since its terms

will be majorized by the terms of the geometric series ||y0|| X)n=oc9> a°d the

series 2~Ln-o(zn+i—zn) converges uniformly to z—y, where z will be a solution

of the differential equation (3.1).

To show that ||z||—»0 as t-+<x>, we show that ||z|| =cioe~x", where —Xi is

negative, and greater than the maximum of the real parts of the character-

istic roots of A, and Ci0 is a constant depending only upon Xi. This is proved

by induction for each z„, it being clearly true for z0, and the proof is similar

to the above.

If, as in the below-mentioned case, dz/dt is lacking on the right-hand side

of the equation (3.1), a solution obtained by the method of successive ap-

proximations is the solution of the differential equation, and thus the con-

clusion is, as in Perron's more inclusive theorem, that every solution whose

initial values are close enough to the zero solution remains uniformly bounded

and approaches 0 as t—> oo.

As cited in the introduction, Levinson, in a letter to the author, has

shown how to derive the boundedness of any solution of (3.1) from the

integral equation (3.4), using only the condition that/(z, w, t) =o(||z|| +||w||)

as ||z|| + ||w||—»0.

The result for B=Bi = 0, and all the components of f(z, dz/dt, t) power

series in the zk only, beginning with second degree terms with constant coeffi-

cients, is due to Poincaré [18] for N = 2, and to Liapounoff for general A=l.

It is easy to see that all the conditions of (3.2) are satisfied under these

conditions.

As the following example shows, even in the simplest cases, a bounded-

ness condition on the initial values is necessary for the truth of the theorem.

Consider the equation

(3.18) dy/dt=-y+y2,       y(0) - 2,

letting y for the moment be an ordinary function of one variable, t. The solu-

tion of (3.18) is given by y = 2/(2 — e'), which approaches » as ¿—»log 2.

We now wish to consider a generalization, considered previously for their

types of equations by Liapounoff and Perron. We assume that k, fc = A, of

the characteristic roots have negative real parts. We can then state:

Theorem 3. Consider the differential equation (3.1) with conditions (2),

(3), (4) of (3.2) satisfied, and let k, k^N, of the characteristic roots of A have

negative real parts. Then there exists a k-dimensional manifold of solutions of

(3.1) which approach 0 as t—>».

Proof. As in the previous proof we begin with the recurrence relation (3.5).

However, since only k of the characteristic roots have negative real parts, it

will be necessary to modify this slightly to eliminate  those solutions of
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dy/dt = Ay which do not approach 0 as t—*oo. The first step is to decompose

7 into the sum of two other matrices. To this end we consider the form of

any element, y.-y, of 7. y,y is the sum of terms of the form eu(P(t) cos pt + Q(t)

•sinp t)where X,/i correspond to the characteristic root \+ip,andP(t), Q(t) are

polynomials of degree at most A— 1. Let the sum of those terms where X <0

be denoted by w<y, and the sum of those terms remaining where X = 0 be de-

noted by Vi,-. Let 7i = (M,-y), 72=(o<y). Then 7= 7i+72. Since there can be

no cancellation between terms with X <0 and terms with X^0, we must have

(3.19) dYi/dt = AYi,       dY2/dt = AY2.

Now choose k linearly independent solutions, w(1), ww, • ■ • , w(k), of

dy/dt=Ay, whose norms approach zero as t—* °o. If y = 2~2r-iarWM, \\y\\ can be

made as small as desired by taking 2^1n-i |ön| sufficiently small. The ^-di-

mensional manifold will be generated by the k constants ar. Let max <go ||y|| = c3,

where the order of magnitude will be specified below.

We now modify the recurrence relation of (3.5) as follows:

Zn+i = y +

(3.20)

j    Y(t - ti)B(ti)zndh -  f   Y2(t - ti)B(ti)zndti
Jo Jo

/» i dz i"° dzY(t - ti)Bi(ti) —-dti-  I     Y2(t - ti)Bi(ti) -^dti
o dti J o dti

+ J   Y(t- ti)f(zn,~,ti\dti

- f  Y2(t - ti)f(zn, ~^-> ti)dh.
Jo \      dti  •   /

Since Y2(t — ti)f(z(ti), dz/dh, ti) is a solution of dy/dt=Ay for any ti,

fôY(t — ti)f(z, dz/dti, ti)dh is also a solution, and therefore if the sequence z„

converges, it converges to a solution of (3.1).

Using the relation 7= 7i-f-72, the recurrence relation becomes

zo = y,

z„+i = y+ f   Yi(t - ti)B(ti)zndh - f   Y2(t - ti)B(ti)zndti
Jo J t

/' ' dz CK dz
Yi(t - ti)Bi(ti) -=. -        Y2(t - ti)Bi(ti) — dh

o dh       J t dh

+ \    Yi(t-ti)f(zn,~,ti)dh
Jo \      dti      /

- j   Y2(t - ti)f(zn, —, h J dh, w = 0.
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The first step, again, is to show that the sequences z„, dz„/dt are uni-

formly bounded. Instead of a constant bound, we obtain an exponential

bound involving t, which serves to prove the statement concerning the ap-

proach to the zero solution as t—-><». Let —X be the least negative of the

negative real parts of the characteristic roots of A. Choose, Xi, X2 so that

X>X2>Xi>0. Choose c4, csso that ||y|| ^c4e-V, i^O, || Ft|| ^cbe-\',t^0. Let p.

be the maximum of the real parts of all the characteristic roots of A, and

choose jui>MéïO. Choose c« to satisfy |[ F2

We now assume that  ||z*|| á2c4e~Xl',

■ • • , n. The inequality is certainly true when k =0, and we now show that it

holds for n + l as well. We have

dzk/dt\\^3ci\\A\\e-yit, for k = 0, 1,

+

+

+

dti

dzn

dti

dh

dti

(3.22)

||zB+l||   Ú IHI  +   f Vl« - OH IIWH \\*n\\dtl
J 0

/"||F^-#0||||5i«i)ll|W|<«i

f'llFiO-iOllllBiOO
J 0

/"||Fä(/-/i)||||5i(/i)

J o II   \      dti       / II

+ f"\\yÁt - ti)\\\\f(zn,~, ti)\\dti
J t \\   \      dti      / II

^ cie-*lt + 2cicict f   e-MC-'i)-^'!^! + 2ciCic» \    ««<*-«*>-*»«»<&,
Jo J t

+ 3cic«c5||¿|| f   e-^'-'rt-^dti + 3ciCiCt\\A\\  f   ««(»-w-mii^,
J o of t

+ ci(2ct + 3c4|m|)c6c7 f   e-w-'rt-^dti
J 0

t'l-dti

y* 00

+ ci(2c4 + 3<r«||^||)c.c, J    e«('-'0-xi<

g 2c4e~Xl'

provided that ci and ci are small enough. Also, since

(3.23) %n+i/dt = ^4zB+i + Bzn + Bidzn/dt + f(zn, dzjdt, t)
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we have

(3.24)

''Zn+l

dt
Í   A     zn   +   B     zn   +   Bi

dt
+   f (*„, -—,   t)\

\       dt       /

= 2p||c4e-xi< + 2cic4e-x" + 3cic4p||e-^'

4- e7(2c4 + 3\\A\\ci)e-*'

= 3|m|c4e-Xl'

again if C\, ci are small enough.

Thus we have obtained uniform bounds for z„ and dzn/dt. The next step

is to show the convergence of the series 2~lñ-o(Zn+\— zn), and as there is no

novelty to this we omit it.

The condition that ||/(z, w, t)\\ =0(||z||+||w||), uniformly in t, is far too

restrictive. Actually, it suffices that/(z, w, t) be majorized by g(zext, weu, t),

where ||g(z, w, t)\\=o(\\z\\+\\w\\) as ||z||+[|w)||—>0, where X is less than the

minimum of the absolute values of the real parts of the characteristic roots

of A, assuming, of course, that all the real parts are negative. If this condi-

tion is satisfied, a change of variable, zeu = z', will bring the problem into the

form treated in Theorem 2.

4. The characteristic roots of A all have nonpositive real parts. Allowing

the characteristic roots of A to have zero real parts makes it necessary to

impose more stringent restrictions upon B, Bi, and f(z, dz/dt, t). It is no

longer true that || Y\\ is integrable over (0, »). To compensate for this, we

shall consider only matrices B and Bi which have norms integrable over

(0, oo ), and functions/(z, dz/dt, t) which are also majorized by functions

integrable over this range. These conditions are rather harsh, but it is easy

to construct examples which show that they cannot be bettered in general.

We refer to Cesari [3] and Wintner [16], for discussion and examples of

this topic. Liapounoff [8] considered the case where two characteristic roots

are pure complex and, by a change of variable, reduces it to the case of one

zero root of the characteristic equation. This method is due to Poincaré. We

shall not discuss these special cases, important as they are, but shall attempt

to derive general criteria.

One consequence of these heavier restrictions is that the stability proper-

ties of the solutions vary with the initial value, fo. Let us call a neighborhood

of the origin in the (yi, y2, • • • , yj-plane the set of all points (y\, y2, • • • , yy)

which satisfy an inequality 2Z£.i|y*| =c- For the case where all the char-

acteristic roots had negative real parts there was a certain neighborhood of

the origin in the z*-plane with the property that if at any time, t0, the solu-

tion was inside this neighborhood, it approached the zero solution, or origin,

as t—r oo. This certain neighborhood was independent of to. We shall see that

in the present case the situation is quite different. Let us call a neighborhood

of the origin a stability neighborhood, designated by 5(i0), if any solution
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which lies inside it for t = to remains inside some fixed neighborhood, inde-

pendent of to, for ttito. Let the c of the inequality ^"IJLi|Vt(fa)| ^c be the

"radius" of this neighborhood, and call it R(to).

The previous case led to the fact that R(to) ¿ici, where Cj was independent

of to. In this section we shall show that under certain conditions of the type

discussed above imposed upon B, Bi, and f(z, dz/dt, t), R(ti)—»» as t0—*«>.

We shall further show that the manifold of bounded solutions can be split

into two sub-manifolds; one manifold consisting of those solutions which tend

to zero as t—++ <*>, and one manifold consisting of solutions which tend to

almost-periodic functions of / as /—*+ oo. The result to be proved is:

Theorem 4. Consider the differential equation of (3.1) where:

(4.1) (1) A is a constant matrix, and all solutions of dy/dt = Ay are bounded.

(2) \\f.k(z,-w, 0||+||/->(?. w, t)\\^h(t)g(c),for IMI+ÍMJác, \úk£N.
(3) f~h(t)dt< oo, g(c)->0, as c->0.

(4) /¿°||£||¿/^ci, fô\\Bi\\dt^Ci, where Ci will depend upon A and f(z, w, t).
Under these conditions there exists an N-dimensional manifold of bounded

solutions of (3.1).

If the right-hand side does not contain dz/dt, every solution, z, of (3.1) for

which ||z(0)|| is small enough is uniformly bounded for all fiO. If A has k roots,

k^N, whose real parts are negative, there is a k-dimensional manifold of solu-

tions which approaches 0 as /—>«>, and an (N—k)-dimensional manifold of

solutions which approach almost-periodic functions as t—*+ °°.

It is only necessary that condition (2) of (4.1) be satisfied for small c.

Proof. We begin with the proof of the stability property. The same re-

currence relation that appeared in the proof of Theorem 2 is used here. Let us

consider the initial value of t to be t0 instead of 0. We have to prove the uni-

form convergence of the sequence of vector functions given by

zo = y,

Y(t - ti) B(ti)zndti +|    Y(t - ti)Bi(ti) -^- dh
<o J to dh

+ f   Y(t- ti)f(z„, dzjdtu h)dti, »â0.
J «0

The proof now proceeds as before with the integrability of ||j5(i)||, ||-Bj(/)||,

and h(t) replacing the integrability of ||F(i)||. Here the only property re-

quired of || F(f)|| is that it be bounded for all t^O. This is a consequence of

(4.1) (1) which implies that all the characteristic roots of A have nonpositive

real parts, and that multiple characteristic roots which have zero real parts

can only occur in such a way as to leave || F(/)|| still uniformly bounded for

t^O. An equivalent way of stating this is to say that those elementary
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divisors corresponding to characteristic roots having zero real parts are sim-

ple.

Since fÔ\\B(t)\\dt, fô\\Bi(t)\\dt, and fôh(t)dt all converge, we have each of
the functions /,"||.B(0||<ft, fZ\\Bi(t)\\dt, f^h(t)dt-^0 as ti-+<*>. From the way
these quantities enter into the proof, it is seen that we may allow ||z(<o)|| to

be larger and larger for increasing to, depending upon the rate of decrease of

the three integrals. The sequence of (4.2) will converge to a bounded solution

as before. We see then that the stability neighborhood becomes larger as r0

becomes larger, and approaches oo as ¿o—» °° •

The case where/(z, dz/dt, t)=0, and Z?i(/)=0 was first treated by Huku-

wara [6]. Shorter proofs were subsequently given by Cesari [3], Weyl [15],

and the author [l]. These methods are different from that used in this paper.

Since the equation is linear now, it is clear that there should be no restric-

tion upon the size of ||z(<o)|j or upon the magnitude of /o|[.B(*)|[<ß. We can al-

ways choose a to sufficiently large to make the integral /,"||.B(i)||d< as small as

desired, and once having obtained N linearly independent solutions, we can

use the fact that the solutions -of an Ath order linear system constitute an

A-dimensional linear manifold to prove that all solutions are bounded as

î-»+oo.

To prove the statement concerning sub-manifolds of solutions, we divide

a particular set of N linearly independent solutions of dy/dt=Ay into two sub-

sets, one set consisting of k linearly independent solutions whose norms

approach 0 as t—*+ oo, and the other residual set consisting of solutions whose

norms are merely bounded as t—>+ oo. These bounded solutions correspond to

characteristic roots with zero real parts. A consequence of condition (1) of

(4.1) is that no secular terms can occur, that is, no terms of the form tk sin pt.

Thus the bounded terms are, as sums of periodic terms, almost periodic

terms, and one can use the terminology almost periodic vector to describe a

vector all of whose components are almost periodic functions.

The /^-dimensional manifold of solutions whose norms approach 0 as

t—*+ oo is formed as in Theorem 3, except that there now need be no de-

composition of 7.

To form the (N—£)-dimensional manifold we consider solutions of the

integral equation

A r* r* dz
z = £ brWr + I    Y(t- ti)B(ti)zdh + I    Y(t- ti)Bi(ti) — dh

(4.3) (

4- f   Y(t - ti)f(z, dz/dh, h)dh
J h

where the wr constitute the subset of N—k linearly independent bounded

solutions whose norms do not approach zero as i—>°o. We assume that this

subset consists of solutions all of whose components are almost-periodic
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functions. It would make no difference if some elements of the ¿-dimensional

manifold were mixed in, since they will vanish for ¿= oo. Thus we assume

that they are not there to begin with.

This equation can be solved by the method of successive approximations,

as usual, provided that ]C**+i|M 's sufficiently small, and we obtain the

desired manifold. Since the b, are small, it is easy to see that this manifold

can not reduce to the single element zero.

Any bounded solution of (4.3) approaches the vector function

* c ' r * dz
2=ZU+ I    Y*(t - ti)B(ti)zdh + I    Y*(t - k)Bi(ti)-dti

. *+i J h J h ¿h
<4-4> -,

+ I    Y*(t - ti)f(z, dz/dt, ti)dti
J h

where F* denotes the matrix formed from F by replacing all terms cor-

responding to characteristic roots with negative real parts by zero. This

function is almost periodic.

For the linear case,/(z, dz/dt, t) =0, Bi(t) =0, this result is due to Wintner

[17], Levinson [7].

5. The case of variable A. If A is a variable matrix, the identity

Y(t) Y~x(ti) = Y(t—k) is not valid, and there is no longer an easy way to take

account of the term F_1(0 appearing in Lemma 2. If one considers this

matrix directly, one obtains a matrix whose elements are cofactors of ele-

ments of Y(t), divided by the scalar det F, the determinant of F. This de-

terminant corresponds to the Wronskian of the wth order linear differential

equation, and an analogous result, of which the corresponding result for the

Wronskian is but a special case, can be derived, namely

(5.1) det F = exp Í   I    trace Adtj •

Unless more is known about the form of the solution, as in the case where

A is constant, we shall be forced to use the crude estimate that each ele-

ment in Y_1(t) is bounded by a bound depending upon the bound on the

elements of Y(t), multiplied by a bound for exp (— f*0 trace Adt). The most

important case is where trace A =0, in which case det F= 1.

More precisely, if exp (— f*0 trace Adt) is to be bounded, fl trace Adt

must be bounded away from — oo, and the condition

o> 0

(5.2) inf   I    tracerai > - oo
J o

is a natural one. This condition was used in the linear case by Wintner [16],

while the condition trace .4=0 was used by the author [l]. The more gen-
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eral condition (5.2) was also mentioned.

Other conditions have been given by Perron [ll].

If we use condition (5.2), Theorems 2 and 4 can be easily generalized.

6. Application of the Birkhoff-Kellogg fixed-point theorem. The applica-

tion of fixed-point theorems of function space to the proof of the existence of

solutions of differential, integral, and other types of functional equations

dates from the classical paper of Birkhoff-Kellogg [2], The scope of the

method was considerably enlarged by Schauder in a series of papers, of which

we mention only the last [13].

Although the fixed-point method has the advantage of furnishing exist-

ence proofs with a minimum of conditions in most cases, it compensates for

this advantage in not furnishing any algorithm for obtaining the solution, and

in yielding no information concerning uniqueness of the solution.

We think it worthwhile, however, to state some results obtained by this

method, as illustration of how some of the previous conditions can be weak-

ened. We shall consider only equations of the form

(6.1) dz/dt = Az+f(z, t).

The first case we shall consider is that where f(z, t) possesses partial de-

rivatives with respect to the z which are bounded in any finite ¿-interval, but

do not satisfy either condition (2) of (4.1), or condition (3) of (3.2). The

existence of these bounded partial derivatives is sufficient to ensure unique-

ness, and we shall combine this uniqueness with the pure existence proof ob-

tained by means of the fixed-point theorem to show that under conditions

similar to those discussed in the previous sections, all solutions of (6.1) will

be bounded.

The second case treated is where f(z, t) satisfies the condition ||/(z, t)\\

= o(||z||), or o(||z||a(í)), h(t) integrable over (0, oo), as ||z||—»0. Here we shall

use a method which seems due to Hukuwara [6] to extend the fixed-point

theorem from the finite interval to the infinite interval.

When (6.1) is converted into an integral equation by means of Lemma 2,

we obtain the equation

(6.2) z = y + f   Y(t - ti)f(z, ti)dh = T(z),
Jo

where we use T(z) to represent a functional transformation. The existence

of a solution of (6.2) is equivalent to the existence of a fixed-point of the

transformation T(z), that is, a function satisfying the equation z = T(z). Un-

der certain conditions, which we shall discuss below, we can assert the exist-

ence of such a fixed-point. This is the substance of the following theorem due

to Birkhoff-Kellogg, which we state as a lemma.

Lemma 3. Let R denote the totality of real vector functions, f(t), definec
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over a finite, closed interval (t0, k), which have the property that \\f(k)—f(k)\\

^Cie whenever \k —12\ ̂ e, and which are uniformly bounded by c2. Let S(f)

denote a one-valued continuous transformation which carries each point of R into

a point of i?.
Then there exists a point, fit), of R which is invariant under the transforma-

tion, that is, S(f) =/.

In order to apply this lemma, it is necessary to state sets of conditions

under which T(z) will satisfy the conditions of the lemma. There is no

difficulty verifying that, provided ||y|| is sufficiently small, and either set of

the following conditions is satisfied, T(z) is a transformation of the desired

type.

(6.3) (1) f?\\Y(t)\\dt<<».
(2) \\f(z, i)|| =o(||z||) as ||z||->0, uniformly in /.

(3) f(z, t) is a continuous function of z.

(6.4) (1) \\Y(t)\\^Cs,t^0.

(2) \\f(z, 0|| = o(\\z\\h(t)), as ||s||-»0.
(3) f0*h(t)dt<«>.
(4) f(z, 0 is a continuous function of z.

Applying Lemma 3, we shall obtain the following two results, which are

improvements of Theorems 2 and 4 respectively.

Theorem 5. Consider the differential equation of (6.1), where:

(6.5) (1) All the characteristic roots of A have negative real parts.

(2) Conditions (2), (3) of (6.3) are satisfied.

(3) The partial derivatives fzk(z, t) exist, and are uniformly bounded in any

finite t-interval.

Under these conditions, the norm of every solution, z, for which the norm of

the initial value, ||z(0)||, is sufficiently small, approaches 0 as t—»0.

Theorem 6. Consider the differential equation of (6.1) where:

(6.6) (1) A is a constant matrix and all solutions of dy/dt = Ay are bounded.

(2) Conditions (2), (3), (4) of (6.4) are satisfied.

(3) The partial derivatives fzk(z, t) exist, and are uniformly bounded in any

finite t-interval.

Under these conditions, the norm of every solution, z, for which the norm of

the initial value, ||z(0)||, is sufficiently small is uniformly bounded for all t.

Proof of Theorems 5 and 6. Converting the differential equation of (6.1)

into the integral equation of (6.2) we apply Lemma 3 for the finite intervals

(0, k), (0, t2). For each finite interval there exists a solution. The bound on

each solution is the same, since it can be taken to be 2 max ||y||, t^O. Further-

more, each solution is equal to y(0) at i = 0. Thus, using the uniqueness

theorem, Lemma 2, the two solutions must be identical over the common

interval of definition. Thus the solution is uniformly bounded over any
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/-interval. The method of proving that ||z||—>0 in Theorem 5 will be illus-

trated in the proof of Theorem 7 below.

It is easy to construct examples of functions,/(z, t), satisfying the condi-

tions of Theorems 5 and 6, but not those of Theorems 2 and 4. Relative to

Theorem 5, we might take the function which has a component such as

z\ sin zie', and for Theorem 6, we can use the function z\ sin Zit/(t2 + l).

To treat the case where the partial derivatives do not exist, we require the

following lemma.

Lemma 4. Let T(f) be a continuous transformation which converts functions

which are bounded and continuous over the infinite interval (0, oo) into functions

which are bounded over the infinite interval, with the same bound, provided that

this bound is small enough, and equi-continuous over any finite sub-interval.

Then the equation T(f) =/ has a solution.

Proof. Consider a sequence of increasing intervals, (0, n), n = l, 2, • • • .

Take the class of functions which are continuous and uniformly bounded

over this interval, where the bound is small enough so that the bound of the

transform is the same. Applying Lemma 3, we see that there is a function

defined over the interval (0, n) which satisfies the equation T(f) =/. Let this

function be fn(t), and define it for t^n by fn(t) =fn(n). The new function is

then continuous for all t, and uniformly bounded. Consider the sequence of

functions, fi(t),f2(t), ■ ■ ■ ,fn(t), • • • ■ The sequence has a uniform bound for

all its terms and, by hypothesis, is equi-continuous over any finite interval.

Using the Arzela selection theorem, we can choose a subsequence which con-

verges uniformly over the interval (0, 1). Considering the interval (0, 2) we

can choose a subsequence cf this subsequence which converges uniformly

over this interval. Continuing in this way, and then using the familiar diag-

onal process, we obtain a sequence which converges everywhere, and uni-

formly in every finite /-interval. Call this sequence (/*(/)), and the limit func-

tion f*(t). We now wish to show that f*(t) is the desired solution. For any

finite t, we have, for n large enough, T(ft(t)) =/*(<). Now if we let n—»oo,

T(fn)~^T(f*), since T(f) is a continuous transformation, and the sequence

(f*(t)) converges uniformly in any finite interval. Thus T(f*) =/*.

The transformation, T(z), of (6.2), satisfies the conditions of Lemma 4,

and thus we can improve Theorems 2 and 4 still further, and can now state

the following theorem.

Theorem 7. Consider the differential equation of (6.1), where:

(6.7) (1) All the characteristic roots of A have negative real parts.

(2) \\f(z, t)\\ =o(\\z\\) as ||z||-»0, uniformly in t.

(3) f(z, t) is a continuous function of z.

Under these conditions, there exists an N-dimensional manifold of solutions

whose norms approach 0 as t—* °°.
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Theorem 8. Consider the differential equation of (6.1), where:

(6.8) (1) A is a constant matrix, and all solutions of dy/dt=Ay are bounded.

(2) \\f(z, 0|| =o(||z||A(0), as ||z|H0.
(3) f0"h(t)dt<cc.

(4) f(z, t) is a continuous function of z.

Under these conditions there exists an Pi-dimensional manifold of bounded

solutions.

Proof. To obtain Theorem 7 in its full form, with the statement concern-

ing the norm approaching 0, we have to make a slight change of variable. Let

z=we~u, where X>0, and less than the minimum of the absolute values of

the real parts of the characteristic roots. The equation of (6.2) becomes

(6.9) w = ye-x< + eX( f   Y(t - ti)f(w(r*\ ti)dk = T(w).
J o

T(w) enjoys the same properties as did T(z), and a bounded solution of

T(w) =w leads to a solution of (6.2) satisfying the condition ||z|| ;íc4e_Xí. To

obtain Theorem 8, Lemma 4 is applied directly to T(z).

We use this method to extend Theorem 3. The transformation in this

case is given by (cf. (3.21))

(6.10) S(z) = y+j   Yi(t - ti)f(z, h)dh - j   Y2(t - *i)/(z, k)dk.

Performing the substitution z=we-Xi, where X>0 and less than the mini-

mum of the real parts of the characteristic roots with negative real parts, we

obtain a transformation satisfying the conditions of Lemma 4, and thus we

have the following extension of Theorem 3.

Theorem 9. Consider the differential equation of (6.1) where:

(6.11) (1) k of the characteristic roots of A have negative real parts.

(2) \\f(z, 0|| =o(||z||) as ||z||->0, uniformly in t.

(3) fiz, 0 ** a continuous function of t.

Under these conditions there exists a k-dimensional manifold of solutions

whose norms approach 0 as t—> oo.

Similar results can be obtained for the case of A a variable matrix, under

the conditions upon trace A specified previously, but the results do not seem

comprehensive enough to warrant quoting.

Part II. Difference equations

7. Introductory remarks. The problem generally considered in the modern

theory of difference equations is the investigation of analytic solutions of

equations of the form
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Xi(t + 1) - F(xi(f), Xi(t), ■■■ , xN(t), t),

i = 1, 2, • • • , N; - oo < t < ».

On this subject there exists a very extensive literature, as may be seen by

reference to N^rlund's treatise [9]. In practice, one has often to deal with a

type of difference equation, or recurrence relation, as it is frequently called, of

the type

Xi(t + 1) = F(xi(t), Xi(t), ■■■ , xN(t +l),t),

i = 1, 2, • • ■ , N; t = 0, 1, • • • .

Here the question is usually to find an explicit expression for m,-(i) in terms

of the initial values, m¿(0), and t. If the system is complicated, and in par-

ticular, if it is nonlinear, it may be very difficult, or even impossible, to find

an explicit expression.

There still remains the very interesting possibility of discussing the

asymptotic behavior of the solution for increasing /, or at least of obtaining

upper bounds for the functions tii(t). As we shall see, one finds here a quite

complete parallel to the corresponding problem for differential equations dis-

cussed in the first part.

Ta Li [14] obtained, for difference equations of the form (7.2), analogues

of the results of Perron [11 ]. In the linear case, Foid [4, 5 ], applying a method

of Dini's developed for use in differential equations, obtained results analo-

gous to Theorem 4.

We intend, in this section, to generalize and extend the results of Ta Li

and Perron, and incidentally to furnish simpler proofs of some of their results.

Then, as an application of these results, we shall sketch an alternate proof of

Theorems 5, 6, 7, 8, 9.

8. Preliminaries. Consider the difference equations

w

(8.1) Az,- = Zi(t + 1) — Zi(t) = £ aij(t)zj + fi(zi, z2, • ■ ■ , zN, t),
f-i

N

(8.2) Az,- = £ «.íWyí. i = 1. 2, • • • , N; t = 1, 2, • • • ,
i-i

where, as customary, we are interested in the behavior of the solutions for

large values of t, and the relations between the solutions of the two equations.

The results will be similar to those obtained for differential equations, and the

proofs even simpler.

We shall confine our attention to systems and the notation shall be as for

differential equations. Equations (8.1) and (8.2) can be written

(8.3) Az = Az + f(z, t),

(8.4) Ay = Ay.
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Usually the elements of A will be independent of t. In that case, as before,

we say that A is a constant matrix. If the elements depend upon /, it will be

supposed that they are defined for every t in the range (0, oo).

It is important to note that we can derive similar results if we consider t

to be a continuous variable over the range (0, oo). A general solution of (8.3)

can be defined, with periodic functions, of period 1, replacing the constants

appearing in differential equations. To obtain the behavior of the solution

for any particular large value of t, one has to reduce t modulo 1, until one

finds the point in the interval (0, 1) which could have been used as a zero-

point to obtain t. If one has a solution of (8.4) with certain uniform proper-

ties one can deduce corresponding properties of the solution of (8.3). It seems

simpler to state the results for the recurrence relations treated here. It is

worth noting that they could be transliterated in terms of ordinary differ-

ence equations.

The uniqueness theorem is now completely on the surface, but we men-

tion it here for future reference:

Lemma 5. If y(t) and z(t) are two solutions of

(8.5) z(t+l) =F(z(t),t)

which are equal at t = h, they are equal for all larger values of t, provided that

F(z, t) is a one-valued function of z and t.

Nothing is said about the relationship between y and z for smaller values

of t. In general, nothing can be said, for although (8.5) yields z(/ + l) in terms

of z(0, the reverse is not necessarily true, if we ask for one-valued functions.

Fortunately, small values of t are of no interest to us.

If A is a constant matrix, the solution of Ay=^4y is determined by the

characteristic roots of A +1. Instead of the trial solution ceu used in differen-

tial equations, one uses here cX'. Eliminating the components of c, one obtains

the characteristic equation  \A +1(1 — X) | =0.

Thus the solutions of Ay =Ay will consist of the real and imaginary parts

of P(n)(K+iu)1, the polynomials Pin) appearing if the characteristic matrix

has multiple elementary divisors. As in the case of differential equations, the

behavior at infinity is determined by the nature of the roots of the char-

acteristic equation. There are crucial regions, inside the unit circle, and out-

side the unit circle, with the circumference of the circle furnishing a third

type of solution. Roots lying inside the circle furnish manifolds of solutions

which approach 0 as t—* oo , roots outside the circle furnish manifolds of solu-

tions which approach °° as /—>oo ; roots on the circumference furnish mani-

folds of oscillating solutions.

The vector equation, (8.4), has N linearly independent solutions,

y(i); -y(2)F • • ■ , yW. These N linearly independent solutions can be chosen

so that the NX.N matrix whose columns are the yw satisfies the initial condi-
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tion 7(0) =Z. It is clear that 7 satisfies the matrix equation A 7=^4 7.

The basic method of this section is the analogue of the basic method of the

first part of the paper, namely conversion of the difference equation into a

sum equation. This sum equation is the analogue of the integral equation used

in the first part. The procedure is discussed in the following lemma.

Lemma 6(2). The solution of

(8.6) Az = Az + w,       z(to) = y (to),

where y is a solution of (8.4), is

(8.7) z(t) = y(t) + 22 Y(t)Y~Kh + l)w(ti).
(i=io

If A is a constant matrix, this reduces to

(8.8) z(t) = y(t) + ¿ Y(t - h - l)w(ti).
<1=«0

Proof. The proof is again by means of variation of parameters. Let

z=Yu. Then

Az = Y(t + l)u(t +1) - Y(t)u(t)

(8.9) = (Y(t + 1) - Y(t))u(t) + Y(t + l)(u(t +1)- u(t))

= (AY(t))u(t) + Y(t + l)Au(t).

Thus

(AY(t))u(t) + Y(t + l)Au(t) = AY(t)u(t) + w(t),

Au(t) = Y~l(t+ l)w(t),

and finally

(8.11) u = v+ ¿ Y(h +l)w(ti),
í,=ío

where v is the first column of Z, the identity matrix. Thus

«-i

(8.12) z = y+22 Y(t)Y~Kh + l)w(ti).
«1=<0

The notation requires a note of explanation. The vacuous sum 2^1'tî-t,,

will be taken to be zero. The sum 2^1h~io w^' De understood to represent the

summand at t = t0. Expressions of this type will be used only where t^to.

(*) Lemma 6 is valid if we add the condition that A+I is nonsingular for < = 0, 1, 2, • • •,

and hence Y is also nonsingular for / = 0, 1, 2, • • • . If A is a constant matrix, this means that A

has no zero characteristic roots.
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If A is a constant, F(0F_1(1) and Y(t — 1) both represent solutions of

AY=AY which have the same initial value at t = l, and therefore must be

equal for ¿è 1. In this way, by induction, one can prove the general inequality

F(0F-H/i) = F(i-/1).
9. The matrix A is constant. In this section we present the result cor-

responding to Theorems 1 and 4. We treat the simple case first, where z(/+l)

does not occur on the right-hand side, and we shall indicate how also to handle

this equation.

Theorem 10. Consider the difference equation

(9.1) Az = (A + B)z + f(z, t),

where either of the following sets of conditions is satisfied :

(9.2) (1) The characteristic roots of A+I all lie inside the unit circle.

(2) B\\ ^cu C\ depending upon A andf(z, t).

(3) f(z, 0|| =o(||z||), as \\z\\—*0, uniformly in t.

(9.3) (1) A is a constant matrix, and all solutions of Ay=Ay are bounded

as t—> oo.

(2) 23«-o||-B(0||"áCi, Ci depending upon A and f(z, t).

(3) \\f(z,t)\\=o:(h(t)\\z\\),and ££o*v0 < •, «* ||*||-K>.
If conditions (9.2) are satisfied, every solution, z, of (9.1) for which the norm

of z(0) is sufficiently small approaches 0 as t—> <*>.

If conditions (9.3) are satisfied, every solution, z, of (9.1) for which the norm

of z(0) is sufficiently small is uniformly bounded as t—> oo.

Proof. Using Lemma 6, convert (9.1) into the sum-equation

i—i i—i

(9.4)    z = y + D Y(t - k - l)B(ti)z(ti) + £ Y(t - k - l)/(z, ti)
1,-0 «,-o

where y is the solution of (8.4) with the same initial value as z, and F is the

matrix solution of AY=A Y with the initial value F(0) =7. Using the same

reasoning as applied in Theorems 2 and 4, it is easy to show by induction that

one has uniform bounds on the solutions. The proof of the statement concern-

ing the norms tending to zero is proved by means of a suitable substitution,

as in Theorem 7. If is easy to see that we can obtain the analogue of Theorem

3 using the same decomposition as employed there.

10. A is a variable matrix. The same difficulties that arose in the case of

differential equations can be partially overcome here also by an appropriate

restriction upon the trace of A. Again the case trace A =0 is the most im-

portant.

It is easy to verify that the determinant of Y, det Y, satisfies the difference

equation

(10.1) AW = (trace A)W,        W(0) = 1,
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and thus

í-i
(10.2) det F = II (1 + trace A(ti)), t = l(').

Í1-0

Thus, results similar to those for differential equations may be stated.

11. The case where z(t+l) appears on the right-hand side. Considering

the more general equation of the form

(11.1) z(t + 1) - z(t) = Az(t) + f(z(t), z(t + 1), t),

we may still use Lemma 6 to convert it into the form of (9.4). Here, however,

the right side will contain z(t), and to obtain a solution we may seek recourse

to the method of successive approximations, putting appropriate conditions

on the partial derivatives of the/(z(/), z(t+l), t) to ensure convergence, or we

may use an algebraic form of the fixed-point theorem. The equation does not

seem of enough interest to warrant detailed discussion, and thus we shall be

content with these few remarks.

12. Application to differential equations. To apply some of the above re-

sults to differential equations, we consider the differential equation

(12.1) dz/dt = Az+ f(z, t), t è 0,

as the limiting case of difference equations of the form

(12.2) z(t + h) = (1 + Ah)z(t) + hf(z, t), t = 0, h, 2k, ■ ■ • ; h > 0,

or

(12.3) z(t + h) - z(t) = hAz(t) + hf(z, t), t = 0, h, 2k, ■ ■ ■ .

We discuss first the case where all the characteristic roots of A have nega-

tive real parts. The equation of first approximation of (12.2) is

(12.4) y(t + h) = (I + hA)y(t), t = 0, h, 2h, • ■ ■ .

The trial solution y(t)=ca' yields the characteristic equation

(12.5)
/ah - 1\ I

0.

Comparing this with the characteristic equation | A —XZ| =0, we see that

to each X there corresponds one or more a given by

a* — 1
(12.6) -= X,        a* = 1 + h\.

h

Expressing X in the form \i+ipi, where Xi<0, we see that

(*) These equations are incorrect. The author was misled by the corresponding results for

differential equations.
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(12.7) I a\ = [(1 + ÄXi)2 + hVif = [1 + 2h\i + h\\\ + pl)]mh.

As h—>0, lim \a\ = eXl. Thus for h less than a given positive number, all

the a will be less than 1 in absolute value. Furthermore, let re!' = l-f-AX,

r>0, — 7Tí£0á+7T, and choose a = rllhei6lh. It follows then that lim a = ex.

The solution of (12.2) for which z(0) =y(0) can be written

t-h

(12.8) z(t) = y(t) + h £ 7(< - h - h)f(z, h), / = 0, A, 2Â, ••• .
tl-0

Choosing h small enough, we see that, under the condition the character-

istic roots of A all have negative real parts, the matrix Y(t), which is the solu-

tion of Y(t+h) = (I+hA)Y(t), is uniformly bounded in / and h.

Choose y0, the initial value, to be independent of h. Then y(t), the solu-

tion of (12.4), satisfying y(0) =y0, is given by y=Y(t)y0, and thus ||y(0||

= lfy(0|| IWI áci||y0|| ÚCi for all /, and OgA^Ai- For h=0, it is clear that
the solutions of (12.4) go over into the solutions of dy/dt=Ay.

We have Y(nh) = 7(A)". Thus, since || Y(h)\\ gc4cj, 0<<r3<l, we have

(12.9) A¿ \\Y(nh)\\ = c4A¿ cT = cth/(l - c3) = e4/(log l/c3) = e6,
n=0 n=0

for small h.

We now wish to show that the z(t) are uniformly bounded in t and h if we

impose the following familiar condition upon/(z, t),

(12.10) \\f(z, i)|| g c8||z|| as ||z|| -> 0 uniformly in /,

where c is a suitable small constant which will be chosen later.

We note that all previous results could have been expressed using a condi-

tion of this sort, instead of considering separately a Bz term, and a term

satisfying the condition o(|)z||) as ||z||—*0, uniformly in t. We preferred to use

this type of condition since it seemed to exhibit the role of the nonlinearity

very clearly.

Let us assume that ||z(jfeA)|| =2c2, for k = 0, 1, 2, ■ ■ ■ , n, and let us show

that this implies the same for z((n+l)h). We have, using (12.8),

*||((» + 1)*)|| = Mil + *Z \\Y(t -h- h)\\ \\f(z, /0||
(1=0

(12.11) ^c2 + 2c2coh2Z\\Y(t-h-h)\\
(1=0

OO

=■ c2 + 2c2Coh2~^ || F(»A)|| =■ c2 + 2c2dCo Ú 2c2,
n=0

provided that c3 is small enough.
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Thus, for each positive h, sufficiently small, we obtain a function, zB(0,

defined for r = 0, h, 2h, ■ • • , satisfying (12.3), uniformly bounded in / and h.

We can define these functions for all / by requiring that they be linear in the

intervals (kh, (k + l)h), k=0, 1, 2, • • • . Thus defined they will be continuous

for all /2ï0. Let us now choose a particular sequence of h values, h, h/2,

h/4, ■ • • , h/2n, • • ■ . We now wish to prove that the corresponding sequence

of functions, solutions of (12.3) for these different h's, is equicontinuous as

well.

Using the difference equation (12.3) we see that

(12 12) \\z(t+h)-z(t)\\^h\\A\\\\z\\+h\\f(z,t)\\

^ ¿|M||(2c2) + h(2ci)ct á c7h.

This combined with the linearity in the intervals (kh, (k + l)h) yields the

required equicontinuity.

We now choose any finite interval, (0, ci), and apply the Arzelaselection

theorem to the sequence of uniformly bounded equicontinuous functions.

This yields a uniformly convergent sequence. Double the interval and repeat

the process with the new sequence. Continuing in this manner and using the

diagonal process, we obtain a sequence, which we designate by Zi, z2, • • • ,

zn, ■ ■ ■ , which converges for all t and uniformly in any finite interval.

Instead of attempting to prove uniform differentiability properties of this

sequence, and thus show that the limit function satisfies the differential equa-

tion of (12.1), we use the relationship of (12.8) to show that the limit function,

z(f), satisfies the integral equation

(12.13) z(0 = y(0 + f   Y(t- ti)f(z, ti)dtu
Jo

The proof of this is akin to the proof of the existence of the Riemann

integral, and with the weapon of uniform convergence for any finite interval

the proof presents no difficulties. We thus omit it. From (12.13) it follows that

z(0 is differentiable and satisfies (12.1).

We have thus outlined another proof of Theorem 7, using much less

sophisticated methods than the fixed-point theorem for function spaces.

Similarly, we can prove Theorem 9. Theorem 8 presents a slight difficulty,

since zero real parts may occur. Returning to equation (12.7), we have in that

case

(12.14) \a\ ¿ [l + hVi]inh^eA\

Thus a' will be uniformly bounded in an interval of length c%/h. As h—>0,

the interval increases, and we can always use the subsequence method to ob-

tain a sequence converging uniformly in any finite interval, and with uniform

bound over the infinite interval for the limit function.
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