The asymptotic behavior of solutions of systems of Volterra integral equations
Author:
Alfred Horn
Journal:
Trans. Amer. Math. Soc. 63 (1948), 144-174
MSC:
Primary 45.0X
DOI:
https://doi.org/10.1090/S0002-9947-1948-0024035-X
MathSciNet review:
0024035
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
G. D. Birkhoff and R. E. Langer, The boundary problems and developments associated with a system of ordinary linear differential equations of the first order, Proceedings of the American Academy of Arts and Sciences vol. 58 (1923) pp. 51-128.
G. Kowalewski, Integralgleichungen, Berlin, 1930.
- R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), no. 8, 545–582. MR 1562910, DOI https://doi.org/10.1090/S0002-9904-1934-05913-5
- J. Pérès, Sur les transformations qui conservent la composition, Bull. Soc. Math. France 47 (1919), 16–37 (French). MR 1504780
- W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Math. 67 (1936), no. 1, 1–50. MR 1555415, DOI https://doi.org/10.1007/BF02401737 V. Volterra, Teoría delle potenze, dei logaritmi e delle funzione di composizione, Mémoire della Reale Accademia dei Lincei (5) vol. 11 (1915) pp. 167-249.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 45.0X
Retrieve articles in all journals with MSC: 45.0X
Additional Information
Article copyright:
© Copyright 1948
American Mathematical Society