The asymptotic behavior of solutions of systems of Volterra integral equations
HTML articles powered by AMS MathViewer
- by Alfred Horn
- Trans. Amer. Math. Soc. 63 (1948), 144-174
- DOI: https://doi.org/10.1090/S0002-9947-1948-0024035-X
- PDF | Request permission
References
- G. D. Birkhoff and R. E. Langer, The boundary problems and developments associated with a system of ordinary linear differential equations of the first order, Proceedings of the American Academy of Arts and Sciences vol. 58 (1923) pp. 51-128.
G. Kowalewski, Integralgleichungen, Berlin, 1930.
- R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), no. 8, 545–582. MR 1562910, DOI 10.1090/S0002-9904-1934-05913-5
- J. Pérès, Sur les transformations qui conservent la composition, Bull. Soc. Math. France 47 (1919), 16–37 (French). MR 1504780
- W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Math. 67 (1936), no. 1, 1–50. MR 1555415, DOI 10.1007/BF02401737 V. Volterra, Teoría delle potenze, dei logaritmi e delle funzione di composizione, Mémoire della Reale Accademia dei Lincei (5) vol. 11 (1915) pp. 167-249.
Bibliographic Information
- © Copyright 1948 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 63 (1948), 144-174
- MSC: Primary 45.0X
- DOI: https://doi.org/10.1090/S0002-9947-1948-0024035-X
- MathSciNet review: 0024035