Functions of extended class in the theory of functions of several complex variables
HTML articles powered by AMS MathViewer
- by Stefan Bergman
- Trans. Amer. Math. Soc. 63 (1948), 523-547
- DOI: https://doi.org/10.1090/S0002-9947-1948-0025583-9
- PDF | Request permission
References
- Stefan Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. vol. 169 (1933) pp. 1-42, and vol. 172 (1934) pp. 89-128.
—, Über eine in gewissen Bereichen mit Maximumfläche gültige Integralderstellung der Funktionen zweier komplexer Variabler, Math. Zeit. vol. 39 (1935) pp. 76-94 and 605-608.
—, Über eine Integraldarstellung von Funktionen zweier komplexer Veränderlichen, Rec. Math. (Mat. Sbornik) N. S. vol. 1 (1936) pp. 851-862.
- Stefan Bergmann, Über meromorphe Funktionen von zwei komplexen Veränderlichen, Compositio Math. 6 (1939), 305–335 (German). MR 1557031 —, Theory of pseudo-conformal transformations and its connection with differential geometry, Notes on lectures delivered at the Massachusetts Institute of Technology, 1939-1940 (available at the Brown University library).
- Stefan Bergman, On the surface integrals of functions of two complex variables, Amer. J. Math. 63 (1941), 295–318. MR 3820, DOI 10.2307/2371525
- Stefan Bergman, Über uneigentliche Flächenintegrale in der Theorie der analytischen Funktionen von zwei komplexen Veränderlichen, Rev. Ci. (Lima) 43 (1941), 675–682 (German). MR 7447
- Stefan Bergman, The behavior of the kernel function at boundary points of the second order, Amer. J. Math. 65 (1943), 679–700. MR 9059, DOI 10.2307/2371875
- Stefan Bergman and Menahem Schiffer, Bounded functions of two complex variables, Amer. J. Math. 66 (1944), 161–169. MR 9995, DOI 10.2307/2371981
- Lipman Bers, On bounded analytic functions of two complex variables in certain domains with distinguished boundary surface, Amer. J. Math. 64 (1942), 514–530. MR 7446, DOI 10.2307/2371701
- Abe Gelbart, On the growth properties of a function of two complex variables given by its power series expansion, Trans. Amer. Math. Soc. 49 (1941), 199–210. MR 3819, DOI 10.1090/S0002-9947-1941-0003819-1
Bibliographic Information
- © Copyright 1948 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 63 (1948), 523-547
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9947-1948-0025583-9
- MathSciNet review: 0025583