Cohomology and Galois theory. I. Normality of algebras and Teichmüller’s cocycle
HTML articles powered by AMS MathViewer
- by Samuel Eilenberg and Saunders MacLane
- Trans. Amer. Math. Soc. 64 (1948), 1-20
- DOI: https://doi.org/10.1090/S0002-9947-1948-0025443-3
- PDF | Request permission
References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- Emil Artin, Galois Theory, 2nd ed., Notre Dame Mathematical Lectures, no. 2, University of Notre Dame, Notre Dame, Ind., 1944. MR 0009934
- Emil Artin, Cecil J. Nesbitt, and Robert M. Thrall, Rings with Minimum Condition, University of Michigan Publications in Mathematics, no. 1, University of Michigan Press, Ann Arbor, Mich., 1944. MR 0010543 M. Deuring, Einbettung von Algebren in Algebren mit kleinerem Zentrum, J. Reine Angew. Math. vol. 175 (1936) pp. 124-128.
- Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. I, Ann. of Math. (2) 48 (1947), 51–78. MR 19092, DOI 10.2307/1969215
- Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2) 48 (1947), 326–341. MR 20996, DOI 10.2307/1969174
- Samuel Eilenberg and Saunders MacLane, Algebraic cohomology groups and loops, Duke Math. J. 14 (1947), 435–463. MR 21939 H. Fitting, Beiträge zur Theorie der Gruppen endlicher Ordnung, Jber. Deutschen Math. Verein. vol. 48 (1938) pp. 77-142.
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601, DOI 10.1090/surv/002
- N. Jacobson, A note on division rings, Amer. J. Math. 69 (1947), 27–36. MR 20981, DOI 10.2307/2371651
- Saunders MacLane and O. F. G. Schilling, A formula for the direct product of crossed product algebras, Bull. Amer. Math. Soc. 48 (1942), 108–114. MR 6152, DOI 10.1090/S0002-9904-1942-07613-0
- A. Speiser, Zahlentheoretische Sätze aus der Gruppentheorie, Math. Z. 5 (1919), no. 1-2, 1–6 (German). MR 1544369, DOI 10.1007/BF01203150
- Oswald Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation $\xi _{\lambda ,\mu ,\nu }\xi _{\lambda ,\mu \nu ,\pi }\xi ^{\lambda }_{\mu ,\nu ,\pi }=\xi _{\lambda ,\mu ,\nu \pi }\xi _{\lambda ,\mu ,\nu ,\pi }$, Deutsche Math. 5 (1940), 138–149 (German). MR 2858
Bibliographic Information
- © Copyright 1948 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 64 (1948), 1-20
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9947-1948-0025443-3
- MathSciNet review: 0025443