A sufficiency theorem for the Plateau problem
HTML articles powered by AMS MathViewer
- by J. W. Lawson
- Trans. Amer. Math. Soc. 64 (1948), 192-204
- DOI: https://doi.org/10.1090/S0002-9947-1948-0026258-2
- PDF | Request permission
References
- L. Bianchi, Vorlesungen über differentialgeometrie, Leipzig, Teubner, 1899; 2d ed., 1910, p. 422.
G. A. Bliss, Calculus of variations, Carus Mathematical Monographs, 1925.
—, Calculus of variations. Multiple integrals, Mimeographed notes, University of Chicago, 1939.
A. B. Carson, An analogue of Green’s theorem for multiple integral problems in the calculus of variations, Thesis, Contributions to the Calculus of Variations, 1938-1941, The University of Chicago Press.
A. R. Forsyth, The range of minimal surfaces providing a minimum area, Annali di Matematica (3) vol. 21 (1913) pp. 121-142.
A. W. Landers, Jr., Invariant multiple integrals in the calculus of variations, Thesis, Contributions to the Calculus of Variations, 1938-1941, The University of Chicago Press.
J. W. Lawson, Minima of integrals over hypersurfaces, Thesis, Contributions to the Calculus of Variations, 1942-1946, The University of Chicago Press.
A. W. Raab, Jacobi’s condition for multiple integral problems of the calculus of variations, Thesis, Contributions to the Calculus of Variations, 1931-1932, The University of Chicago Press.
T. Radó, The Plateau problem, Ergebnisse der Mathematik, vol. 2, Berlin, Springer, 1933, pp. 81-190.
- William T. Reid, The Jacobi condition for the double integral problem of the calculus of variations, Duke Math. J. 5 (1939), 856–870. MR 466 H. A. Schwarz, Gesammelte mathemalische Abhandlungen, vol. 1, Berlin, Springer, 1890, pp. 223-269.
Bibliographic Information
- © Copyright 1948 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 64 (1948), 192-204
- MSC: Primary 49.0X
- DOI: https://doi.org/10.1090/S0002-9947-1948-0026258-2
- MathSciNet review: 0026258