Neumann series of Bessel functions
HTML articles powered by AMS MathViewer
- by J. Ernest Wilkins
- Trans. Amer. Math. Soc. 64 (1948), 359-385
- DOI: https://doi.org/10.1090/S0002-9947-1948-0027092-X
- PDF | Request permission
References
- H. Bateman, On an expansion of an arbitrary function in a series of Bessel functions, Messenger of Mathematics vol. 36 (1907) pp. 31-37.
A. Gray, G. B. Mathews, and T. M. MacRobert, A treatise on Bessel functions, MacMillan, 1931.
W. Kapteyn, On a series of Bessel functions, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences, vol. 7 (1905) pp. 494-500.
—, On an expansion of an arbitrary function in a series of Bessel functions, Messenger of Mathematics vol. 35 (1906) pp. 122-125.
W. V. Lovitt, Linear integral equations, McGraw-Hill, 1924.
S. Pincherle, Sopra alcuni sviluppi in serie per funzioni analitiche, R. Accademia delle scienze dell’Istituto di Bologna, Memoria (4) vol. 3 (1881) pp. 151-180.
E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford University Press, 1939.
—, The theory of functions, Oxford University Press, 1939.
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110 H. A. Webb, The expansion of an arbitrary function in a series of Bessel functions, Messenger of Mathematics vol. 33 (1904) pp. 55-58. E. T. Whittaker and G. N. Watson, Modern analysis, Cambridge University Press, 1943.
Bibliographic Information
- © Copyright 1948 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 64 (1948), 359-385
- MSC: Primary 42.4X
- DOI: https://doi.org/10.1090/S0002-9947-1948-0027092-X
- MathSciNet review: 0027092