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Introduction. By a measure on a Boolean algebra we understand as usual

a function defined over all elements of the algebra, assuming finite non-nega-

tive real numbers as values (but not identically vanishing), and satisfying the

condition of finite additivity: the function value at a sum of two disjoint

elements equals the sum of the function values at these elements. By includ-

ing in this definition some additional conditions we arrive at special kinds of

measures: two-valued measures, strictly positive measures, and countably addi-

tive measures.

In §1 we concern ourselves with the general notion of measure; we show

how a measure—and in particular a two-valued measure—defined on a sub-

algebra of a given Boolean algebra, or even on an arbitrary subset of the

algebra, can be extended to the whole algebra. In §§2 and 3 we consider spe-

cial kinds of measures, in fact, strictly positive and countably additive meas-

ures, and we establish several partial criteria (necessary or sufficient condi-

tions) for their existence. Some of the results stated in this paper can be ob-

tained in a roundabout way from what is to be found in the literature, but

they will be provided here with rather simple and direct proofs, without

applying notions not involved in the formulation of the results.

Terminology and symbolism^). Given any two sets A and B, we denote

their union (or sum) by A\JB, their intersection (or product) by AC\B,

their difference by A —B. The symbol C (or ¡2) is used to denote set inclu-

sion, Gthe membership relation,and {a} the set consisting of just one element

a. The symbol

E[-..]
X

will denote the set of all elements x which satisfy the condition formulated in

square brackets. The re-termed sequence with the terms a0, • • • , an-i is de-

noted by (cío, • ■ ■ , a„-i) (notice that the sequence begins with a0, and not

with ax) ; analogous symbolism is used for infinite sequences.

"Countable" is used here in the sense of "finite or denumerably infinite."

^o denotes the power of the set of natural numbers, Kx the power of the set

of ordinal numbers of the second class, and c the power of the set of real num-

bers.

Presented to the Society, November 29, 1947; received by the editors September 29, 1947.

(') For set-theoretical notions involved in this discussion consult Hausdorff [l ] and

Sierpiñski [l]. For notions of general algebraic nature and those applying specifically to

Boolean algebras consult Birkhoff [l ]. Numbers in brackets refer to the bibliography at the end

of this paper.
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A nonempty family of subsets of a given set U which is closed under finite

set-theoretical addition and under complementation (with respect to ¿7) is

referred to in this paper as afield of sets. A field F is called countably complete

if it is closed under countable addition of sets; it is called countably complete

in the wider sense if it satisfies the following condition: whenever for an in-

finite sequence of sets So, ft, • • • in F there is a smallest set 5 in F including

all of them, this set 5 coincides with the sum of the sets So, ft, • • • . Obvi-

ously, every countably complete field of sets is also countably complete in the

wider sense.

The notion of a set which is (partially, simply, or well) ordered by a given

relation -< and the notion of two similarly ordered sets are assumed to be

known. By an interval of an ordered set S we understand here what is some-

times called a half-open interval, that is, a set of the form

E [x G S, x 9^ a, a < x -< b]    or    E [x £ S, x 9e a, a -< x]    or
X X

E [x G S, x < b]
X

where a and b are arbitrary elements of S. A subset D of 5 is said to be dense

in 5 if every nonempty interval of S contains at least one element of D.

A function / whose domain (the set of argument values) coincides with

a given set 5 is referred to as a function on 5. On the other hand we say that

the functions / and g agree on a set S if 5 is a subset of the domains of both

functions, and if fix) =g(x) for every x in 5.

By a Boolean algebra we shall understand as usual a system formed by a

set A of arbitrary elements a, b, c, ■ • • and by the fundamental operations

of addition (join operation) +, multiplication (meet operation) -, and com-

plemention , which are assumed to satisfy certain familiar postulates. To

simplify the symbolism we shall not distinguish between a Boolean algebra

and the set of all its elements. We assume to be known how, in terms of the

fundamental operations, other Boolean algebraic notions can be defined—■

such as the elements 0 and 1, the relation of inclusion ^ (or ^), that of strict

inclusion < (or >), the sum 2Z anQl the product JJ of an arbitrary system of

elements (in particular, of a finite or infinite sequence). It should be noticed

that the symbols +, -, 0, 1, and so on, will also be used in their ordinary

arithmetical meaning, in application to natural and real numbers; the mean-

ing in which a symbol is used will always be clear from the context.

The notions of general algebraic nature—such as subalgebra, ideal, the

quotient algebra A/I (of an algebra A over an ideal I), direct product, and

isomorphism-—are familiar from the literature; the same applies to the more

special notions of an atom, an atomistic and an atomless algebra, a complete

and a countably complete algebra.

A set D of nonzero elements of a Boolean algebra A is said to be dense

in A if for every element x in A, x^O, there is an element y in D which is in-
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eluded in x (y^x); this is equivalent to saying that every element x in A is

the sum of all elements y in D which are included in x. A Boolean algebra A is

called separable if there is a countable set D which is dense in A.

A Boolean algebra A is called countably distributive if the following condi-

tion is satisfied: Let N be the set of all infinite sequences w= («o, »1, • • • ) of

natural numbers. Given any double sequence of elements a,-,y in A, i, j

= 0, 1, •• -, if all the sums Zj'<«>af,y for i< oo, their product lT«°° Zí<»aí,ji
and all the products U«»a<,ni. for n G Af exist, then the sum y^.n(=w TTi<°°ffl..n.-

also exists, and we have

n z «»-.j = z n <*.><.
¿<oo 3<oo n^N    l<oo

If the formula just mentioned is only assumed to hold for those double se-

quences of elements a,-,y which satisfy the condition <z,-,y^a,-,y+i for i, j

= 0, 1, • • • , the algebra is called weakly countably distributive.

When referring to a Boolean algebra of sets we shall always understand

that set-theoretical addition, multiplication, and complementation (with re-

spect to a fixed set) are taken as fundamental operations. As is well known,

a family of sets is a Boolean algebra in this sense if and only if it is a field of

sets. If, in particular, S is a set which is simply ordered by a relation ■<, then

all the finite sums of intervals of 5 constitute a Boolean algebra, which will

be referred to as the interval algebra of S (under <).

1. Measure and partial measure. Throughout this section the symbol A

will be used to denote an arbitrary Boolean algebra (and in most cases the

assumption that A is a Boolean algebra will not be explicitly stated).

Definition 1.1. .4 function f on a Boolean algebra A is called a measure on

A if it is a real-valued function such that

0) 0^fix)forxEA,
(ii) /(x+y) =/(x)+/(y) whenever x, y(EA and x-y = 0,

(iü)/(l) = l.
Condition (iii) in this form is not essential for our purpose. Evidently

any function, not assuming »asa value, which satisfies all the conditions of

1.1 except for (iii) and which is not identically 0 can be converted into a

measure by dividing by/(l).

Corollary 1.2. Iff is a measure on A, then

(0/(0) =0,
(ii) fix) ûfiy) whenever x, y G A and x^y.

Proof. This follows from 1.1.

Corollary 1.3. If f is a measure on A, and a0, • • • , am_iG-4, then

a) z/k) = z/( z ru.)
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where Sm-k is the set of all sequences p= (po, • • • , pk) with 0^po< • • • <pk

<m.

Proof. We proceed by induction. For m = Q, 1 the conclusion is obvious.

For m = 2 it reduces to the well known formula

/(ao) + fiai) = /(do + ai) + /(a0-ai),

which results from 1.1. Using this formula we pass from m = 2 to m — 3 as

follows :

/(öo) + fiai) + fiat) = /(d0 + dx) + /(do-dx) + /(d2)

= /(d0 + dx + a2) +/(d0-d2 + fli-ci2) +/(do-dx)

= /(do + dx + d2) + /(do • dx + d0 ■ d2 + ai-at)

+ /(d0-dx-d2).

The passage from m to m + 1 is analogous.

It is well known that measures exist on an arbitrary Boolean algebra A.

What is perhaps more important, a measure on a subalgebra of A can always

be extended to a measure on A (obviously, 1.1 applies automatically to any

subalgebra B of A, since B is itself a Boolean algebra with the same funda-

mental operations as A). We shall establish this fact in an even stronger form

by considering, instead of subalgebras, arbitrary subsets of A containing the

element 1(2). This will require an appropriate extension of 1.1; measures on

arbitrary subsets will be referred to as partial measures (see 1.7 below). To

discuss these partial measures we need a Boolean algebraic notion which is

not familiar from the literature:

Definition 1.4. Let a0, • • • , am-i and b0, ■ • • , ön-i be arbitrary elements

of A. We agree to say that

{do,   •  •  •   , dm_x)   £|   {bo,   •  •   •   , ¿n_l)

if
Z     II avi á Z     II bPi for every k < m,

PGsm'k   i£k PGs"-k    iik

where Sr'k ir = m, n) has the same meaning as in 1.3.

We list without proof some elementary properties of the relation just de-

fined.

(s) This result was established in a more abstract and general form in Tarski [l ]. (To apply

the results of that paper to a Boolean algebra, the latter should be treated as a system with

a fundamental operation which coincides with the usual Boolean algebraic addition when ap-

plied to two disjoint elements, but which is left undefined otherwise. Boolean algebras in this

conception do not satisfy the postulates of §1 of the paper in question, but the desired result

can be obtained by applying the remarks in §2 of that paper.) In this section we follow the

general argument of Tarski [l], but we modify it so as to make it apply directly to Boolean

algebras; due to specific properties of these algebras, the argument undergoes simplification in

various places.
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Theorem 1.5. Letao, • • • , flm_x, bo, ■ • ■ , ôn_i, Co, • • • , cP-i, do, • • • , da_x

be arbitrary elements of A. We then have:

ii) If m = n and (bo, • • • , ôn-i) is a permutation of (a0. • • • ■ ßm_i), then

(d0,   •   •  •   ,  dm_x)   ^   (bo,  •  •  •   ,  bn-l).

(ii) If

(d0, • • • , dm_x) 5¡ (ô0, • • • , bn-i) :S (¿o, • • • , Cp_x),

then

(iii) If

and

(do,  •  -  •   ,  dm_x)  ^   (Co,  *  *  *   , Cp-l).

(do, • • •   , dm-l)  g  (Ôo, • • •   , Ô„_x)

(co, • • • , Cj,_x) ¿ (do, • • • , d5_x),

then

(do, ■ • ■  , dm_x, Co, • • •  , Cp-l) ^  (Ôo, • * •  , Ô„_l, d0, • • •  , dg_x).

(iv) 1/

(do,  •  •  •   ,  dm_x)  íS   (Jo,  •  •  •   , Ô„_l)      dMíi      dm_I   =   Ô„_x,

then

(do, • • • , dOT_2) ?£ (ôo, • • • , bn-t).

(v) (ao, • • • , am-i)^(a0, ■ • ■ , am-i, 0)^(a0, ■ ■ • , am-i).

(vi) //

(do,   •   •   •  , Cïm_x)   5¡   (&o,   •   •   • , Ôn-l)

ared &„_i ■ di = O for all i<m, then

(do,  •  •  •   , dOT_x)   5Î   (Ô0,  •   •  •   ,  bn-t)-

(vii) //

Ô* =    Z     IT avi for k <m,

Sm,k having the same meaning as in 1.3, then

(do, • • • , dm_x) g (ôo, • • • , ôm_x) ^ (do, • • • , dOT_x).

Definition 1.6. A real-valued function f on a subset S of a Boolean algebra

A is called a partial measure on S if the following conditions are satisfied:

(i) 0^fix)forxES.
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(ii) If ao, • • • , am-i, bo, - - • , bn_iES and

(do,   •   •   •   ,  fln-l)   á=   (Ôo,   •   •   *   ,   Ô„_l),

then

Z/(«0 = Z Ah)-

(iii)  1G5 and/(1) = 1.
Definition 1.6 could be extended to subsets of A which do not contain 1

as an element. However, the definition would have to assume a more involved

form and our further discussion would undergo some complication.

Corollary 1.7. If lŒ.SÇ.T,fis a function on S, and gis a partial measure

on T which agrees with f on S, then f is a partial measure on S.

Proof. This follows from 1.6.

Corollary 1.8. Letf be a partial measure on S.

(i) If OES, then fiO) =0.
(ii) If x, y (ES and x^y, then fix) Sf(y).
(iii) If x, y, x+yES and x-y = 0, then fix+y) =/(x)+/(y).

(iv) If x, y, x+y, x-yES, then f(x+y)+f(x-y) =/(x)+/(y).

Proof. To obtain (ii) we notice that if x^y, we have by 1.3 (x)^(y), and

hence, by 1.6, /(x)^/(y). Similarly, under the hypotheses of (iii) [or (iv)],

we have, by 1.5 (vii) and 1.5 (v),

(x, y) ^ (x + y) ^ (x, y)    [or (x, y) á (x + y, x-y) g (x, y)],

and hence by 1.6 the conclusion. Finally, (i) obviously follows from (iii).

Theorem 1.9. (i) Let S be a subset of A closed under the operations of addi-

tion and multiplication. For a real-valued function f on S to be a partial measure

it is necessary and sufficient thatf and S satisfy 1.6 (i), 1.6 (iii), 1.8 (i), 1.8 (ii),

and 1.8 (iv).

(ii) Let S be a subalgebra of A (or, in particular, let S = A). For a function

f tobe a partial measure on S, it is necessary and sufficient thatf be a measure on

S.

Proof. By 1.6 and 1.8, the conditions stated in (i) are necessary for/ to

be a partial measure on 5. To show that these conditions are also sufficient,

we first derive 1.3 (i) from 1.8 (iv) by arguing as in the proof of 1.3, and then

obtain 1.6 (ii) with the aid of 1.5 (vii), 1.8 (i), and 1.8 (ii). Statement (ii)

follows from (i) by 1.1, 1.2, 1.3, and 1.8 (iii).

Theorem 1.10. Let f be a function on So^JSiQA such that f(x)=0 for

xES0 andf(x) = 1 for xG-Si. Then f is a partial measure on So^JSi if and only

if IE.Si and
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(i) Z a< + Z bj * 1
i<m ;'<n

whenever OiESo, biESifor i<m, j<n, and m, w< oo.

Proof. Let/ be a partial measure on SoWSi. Then, by 1.6 (iii), lGSx.

Suppose

£o<+ Z¿7= i

for some choice of elements djG^o, bjESi. Then

n¿3 = z«..

This implies

(Ôo,   ■   •   •   ,  Ôn_x)   á   (do,  •   •  •   ,  dm_l,   1,   •  •  •   ,   1)

where 1 is repeated re —1 times in the sequence on the right. By 1.6 (ii) we

have the absurdity n^n — l.

Conversely, suppose lG^i and assume (i) holds. To show/ is a measure

we need only verify 1.6 (ii). Suppose

(1) (Ôo,  •  •  •   , Ô„_x,  Co,   ■   •   •   ,  C,p_l)   ¿   (do,  •  •  •   , dg_l, do,  •  •  •   ,  dm-x)

where &<, diESx and a,-, c^G^o- If we had

Z/(*.■) + Zf(a) > Zfidi) + £/(*),
% t<n i<p i'<g »<m

we should have n>q. By applying 1.4 to (1), we obtain a sequence of in-

equalities involving sums of products of k elements. Combined with n>q,

the inequality for k = n would imply

n bf ú z *<,
]'<n ¿<m

and this contradicts (i).

Our immediate task is to obtain a kind of converse of 1.7, that is, to

show that every partial measure on a subset of A can be extended to any

larger subset of A. We start with the following definition.

Definition 1.11. Let f be a partial measure on a subset S of a Boolean

algebra A, and let xEA. We define fe(x) (the exterior measure of x with respect

tof) as the greatest lower bound of numbers £ of the form

a) £=rz/(«o-z/(*i)i/«,
L i<n y<p Af

where a,-, b,ES for i<n, j<p, and where

(b0, • • • , ôp_x, xo, • • • , xm_x) ^ (d0, • • • , d„_i)
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provided xy = x for every j <m.

Similarly fi(x) (the interior measure of x with respect to f) is the least upper

bound of numbers £ of the form (i), where a,-, bjES for i<n, j<p, and where

(do, ■  • •   , d„_x)  ^  (Ôo. •  • •   , Ôj,_I,  x0,  • •  •   ,  Xm_x)

provided xy = x for every j<m.

It may be noticed that 1.11 cannot be simplified by taking in it w = l;

for the values of fe(x) and/,(x) would in general change, and Theorem 1.19

below would no longer be true. When applied to a subalgebra S of A, 1.11

agrees with the definitions of exterior and interior measures commonly used

in analogous situations. In fact, we have the following theorem.

Theorem 1.12. If f is a (partial) measure on a subalgebra B of A, then

fi(x) is the least upper bound of all numbers f(y) with y^x, yEB, andfe(x) is

the greatest lower bound of all numbers/(y) with y^x, yEB.

Proof. Let g(x) be the least upper bound of all numbers /(y) with y^x

yEB. Then, by l.ll,/j(x)^g(x). Let e be an arbitrary positive number and

choose a pair of sequences (cío, • • • » au-i), (bo, • • • , bk-i) of elements in B

such that

(do, • • • , ak-i) ^ (ôo, • • • , ôjfc_i, xo, • • • , Xm-x),

where xy = x for j<m, and

»•&<*)-«] < Z/(<*.)" Z/(*»)•
i<k i<k

Note that 1.5 (v) and 1.8 (i) allow us to assume that the two sequences have

the same number k of terms. By 1.5 (vii), 1.7, and 1.3, we may assume

ß» = a.+i and bistbi+i for i<k — l. Let cf = ai- b¡ and d, = ô<-cii for i<k.  Then

(c0, • • • , Cjfc_i) g (do, • • • , dk-i, Xo, • • • , xm_i)

by 1.5 (vii) and 1.5 (iv), and

f(d) - f(di) = fiad - f(h) for i<k

by 1.3. Since each element d,- is disjoint with all the elements Co, • • • , c*_i, we

have

(Co, • • •  , Cjfc_x) ;S  (xo, • • •  ,  Xm_x)

by 1.5 (vi). Let

whenever i is less than the larger of k and m (Sk,i having the meaning indi-

cated in 1.3). Then, by 1.5 (vii), e,-^x for i <m and, by 1.4, e,- = 0 for i^m.

Hence
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»-«(*) ä Z/í*) - Z/(*).

and

»»■*(*) = Z/(«0 - E/(*) = E/(*) - ZM)

= Z/(«••) - Z/(*0 > «■ [/*(*) - •!•

By the arbitrary nature of e, we have g(x)^/i(x), and hence the conclusion

i(x)=fi(x). The proof for/e(x) is analogous.

Theorem 1.13. Iff is a partial measure on SQA, and xEA, then 0 ^fi(x)

Proof. The inequalities 0^/<(x) and/„(x) ^1 are immediate consequences

of 1.11 since (0)á(*)á(l). If

(d0, • • •  , dp-l) ^  (ôo,    • • • , Ô3_x, Xo, • • •  , Xm_x)

and

(c0, • • • , Cr-i, y0, • • • , yB-i) á (do,  • • • , d,_x)

where Xi = x for ¿<?re and y¡ = x for j<n, then by 1.5 (iii) and 1.5 (i)

(do, • • • , dp-I, • • •) á (ôo, • • • , ô3_x, • • • , Xo, • • • , xm_x, • • • ),

each of the terms a0, ■ ■ ■ , ap_x, ôo, • • • , ô9-x, Xo, ■ • • , xm_x occurring  re

times, and

(co, • • • , Cr-i, ■ • • , y0, • • • , yn-i, • • • ) = (do, ■ • • , da_x, • • • ),

each term occurring m times. Hence, by 1.5 (iii) and 1.5 (iv),

(do, • • • , dp_x, • • • , Co, • • • , cr_x, • • • )

^ (ôo, • • • , ô,_x, • • • , do, • • • , d,_x, • • • ),

the ci,- and ô< being repeated re times, and the c< and d< being repeated m times.

Therefore, by 1.6,

[ z/(«o - z/(iol A = I" ¿Zñdt) - z m~\ /n.
L i<p i<q J / L  i<s i<r J '

The inequality/i(x) úfe(x) is now obvious by 1.11.

Theorem 1.14. If f is a partial measure on SQA, and xES, then /,-(*)

=fe(x)=f(x).

Proof. We need only notice that (x)^(x) and apply 1.11.

.Using the proof of 1.13 as a model it will be easy to adapt standard meth-
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ods of measure theory to give a proof of the following theorem.

Theorem 1.15. If f is a partial measure on SQA, and if x, yEA and x-y

= 0, then

M«) + My) ̂  M* + y) = M«) + My) = /.(* + y) = /.(*) + My)-
As immediate consequences of 1.14 and 1.15 we obtain:

Corollary 1.16. If f is a partial measure on SÇ.A, and if xES, yEA,
and x-y = 0, then

/.-(* + y)= /(*) + My)   and  /.(* + y) = fix) + My).

Corollary 1.17. If f is a partial measure on SQA, and if x, yEA,
x+-yES, and x-y = 0, then

fix+y) = Mx) + feiy).

Corollary 1.18. Iff is a partial measure on SQA, and xG-<4, then

Mx) + /.(*) = /.(*) + /,(*) = i.

Theorem 1.19. If fis a partial measure on SQA, xEA, and g is a function

on SW {x} which agrees with f on S, then g is a partial measure on S*U {x} if

and only if ft(x) ^g(x) ^/„(x).

Proof. Suppose/,(x) ^g(x) ^/e(x), and suppose

(d0, • • • , ak-i, Xo, • • • , xm_x) g (ôo, • • ■ , ôp_x, yo, ■ • • , yn-x)

where atES, b¡ES for i<k,j<p, and Xj = x, yy=x for i<m,j<n. We must

show

m-gix) + 2Z g(ai) ̂  n-g{x) + 2Z g(bj)-
i<k j<p

This being an immediate consequence of 1.5 (iv) when m=n, assume n—m

= r>0. By 1.5 (iv),

(d0, • • • , di_i) ^ (ôo, • ■ • , ôp_x, yo, • • • , yr-i).

Hence

r-gix) ^ r •/<(*) â Z g(<n) - Z *(*/),
i<k j<p

and the conclusion follows. If n<m, we use the fact that g(x) g/e(x).

Conversely, suppose g is a partial measure. If e is a positive number, we

can find elements a¿, b¡ of S such that

(do, • • • , ak-i, Xo, • • • , Xm-l) á (ôo, • • • , Ôp_x)

with x, = x for i<m and
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«■ [/.(*) + «] < Z *(**) - Z «(<*)■

But

w-g(x) + XI ?(«••) á Z i(bj).
«s y<ï>

Hence g(x)</e(x) + e for arbitrary e>0, and therefore g(x) ^f,(x). Similarly

g(x)^/j(x), and the proof is complete.

Theorem 1.20. Iff is a partial measure on SQA which assumes only the

values 0 and I, then j¿ andfe assume only the values 0 and 1 on the whole algebra

A.

Proof. Let xEA, and let So be the set of elements yES for which/(y) =0.

We put Si = S—So- If, for some choice of elements a.G-So, bjESi, we have

(i) í + EhI«, = i,
3<P i<n

then

x ̂  Z «< + Z bj,
i<n j<p

and, by 1.18 and 1.15,/e(x)=0. If, on the other hand, (1) always fails, then

by 1.10 the function g on SW{x} which agrees with f on S and for which

g(x) = l isa partial measure on SUJx}. Hence, by 1.19,/«(x)^g(x) = 1; and,

by 1.13, /«¡(x) = 1. The statement for /< follows from 1.18.

Theorem 1.21. Iff is a partial measure on S, and SÇ.TÇ.A, then there is

a partial measure g on T which agrees with f on S. If, moreover, f assumes only

the values 0 and 1, the same may be postulated for g.

Proof. This follows from 1.19, 1.20, and the well-ordering principle.

Theorem 1.22. If fis a partial measure on a subset S of a Boolean algebra A

ior a measure on a subalgebra S of A), there is a measure g on A which agrees

withf on S. If f assumes only the values 0 and 1, the same may be postulated for g.

Proof. This is proved by 1.21 and 1.9 (ii).

Corollary 1.23. There is a measure on every Boolean algebra A ; */ a^O

is an element of A, then there is a two-valued measure g on A with g (a) = 1.

Proof. The function g on {a} U {1} with g(a) =g(l) = 1 is a partial meas-

ure by 1.10, and hence we may apply to it 1.22.

According to 1.9 (ii), 1.7, and 1.22, Definition 1.6 characterizes adequately

and intrinsically the behavior of a measure restricted to an arbitrary subset

5 (containing 1) of its original domain.

We wish to point out here some consequences of our discussion which are
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less closely related to the main ideas of this paper.

From 1.21 we easily see that, if / is a partial measure on SQTQA, and

xET, then the set of values of g(x) as g ranges over all partial measures on T

which agree with / on S is the closed interval with the end points/,(x) and

fe{x). This result (especially when applied to the case T=A) gives the pos-

sibility of characterizing the inner and outer measures/< and/, in a way differ-

ent essentially from that used in 1.11.

Given a partial measure / on a subset S of A, an element x in A may be

called measurable with respect to f if/i(x) =/e(x). In view of 1.19 and 1.21 we

can also say that x is measurable if/ can be extended from 5 to 5WJxj in

exactly one way, or if every measure on A which agrees with f on S agrees

with/also on {x}. In view of 1.8 (i) the element 0 is measurable. By 1.14

every element x in 5 is measurable; in particular, 1 is measurable. From 1.15

it follows that, x, y, u, and v being any four elements in A with x+y = re and

x-y — v, if three of them are measurable, then the fourth also is measurable;

in particular, if an element x is measurable, the same holds for x. Hence we

can conclude, for instance, that if the set 5 is closed under addition or under

multiplication, then every element in the subalgebra F generated by S is

measurable; thus in this case there exists only one measure g on F which

agrees with / on 5.

As the last theorem in this section we give a result of a more special nature

which will find an application in §2.

Theorem 1.24. For every Boolean algebra A the following three conditions

are equivalent:

(i) A is isomorphic with afield of subsets of the set of natural numbers.

(ii) A is a subalgebra of a separable Boolean algebra.

(iii) There exists an infinite sequence of measures fo, fi, • • • on A such that,

for every element xt^O in A, we havefnix) = \for some measure /„ of the sequence.

The measures fo, fi, • • •  in (iii) may be assumed to be two-valued.

Proof. From the fact that A is isomorphic to a subalgebra of a separable

algebra we conclude in a familiar way that A itself can be imbedded as a sub-

algebra in a separable algebra; hence (i) implies (ii).

To derive (iii) from (ii) we assume that A is a subalgebra of a separable

Boolean algebra A'. Let d0, dx, • ■ • be elements (different from 0) which

constitute a set dense in A'. By 1.23 there are measures fó, fi,, • ■ • on A'

such that/«' (d„) = l for « = 0, 1, 2, ■ • • . In view of 1.1 (iii) and 1.2 (ii), for

any given element x^O in A ', there is a natural number re such that/n' (x) = 1.

Let now fn be the function on the set A which agrees with /„' on this set

(re = 0, 1, 2, • • • ). By 1.7 and 1.9 (ii), the functions fo, /x, • • • just defined

satisfy condition (iii) of our theorem.

Assume now that (iii) holds. Let/o,/x, • • • be measures satisfying condi-

tion (iii). We first show that these measures can be replaced by two-valued
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measures ho, hi, • • • satisfying the same condition. In fact, for re=0, 1,

2, • • • , let Sn be the set of all xG^4 such that/„(x) = 1, and let g„ be the func-

tion obtained from /„ by restricting its domain to Sn- By 1.7 and 1.9 (ii),

g„ is a partial measure on Sn, which clearly assumes 1 as the only value. By

1.22 there is a two-valued measure hn on A which agrees with g„, and hence

also with/n, on Sn. The measures ho, hi, • • • thus obtained obviously satisfy

(iii). Now for every xEA let Hix) be the set of all natural numbers re such

that A„(x) = 1. A familiar argument shows that the family of all sets Hix) of

natural numbers just defined is a field of sets (with the set of all natural num-

bers as an element) and that the function H maps the algebra A isomorphi-

cally onto this field (3). Thus (iii) implies (i); and the proof is complete.

The fact that 1.24 (ii) implies 1.24 (i) can be expressed in the following

way: the Boolean algebra of all sets of natural numbers is a universal algebra

for all separable Boolean algebras and for all subalgebras of these algebras.

It may be noticed in this connection that a subalgebra of a separable Boolean

algebra is not necessarily separable itself. For instance, the separable Boolean

algebra of all sets of natural numbers has a free subalgebra with uncountably

many generators(4), and the latter is easily seen not to be separable.

In the proof of 1.24 we have made an essential use of Theorem 1.22 and

Corollary 1.23 which were established by transfinite methods. We do not

know any constructive proof of Theorem 1.24 even in its application to cer-

tain special Boolean algebras. For instance, the algebra of all Borel sets of

Euclidean space divided by the ideal of Borel sets of the first category is

known to be separable(6) and hence to satisfy 1.24 (ii), but we do not know

how to prove without using transfinite methods that this algebra also satis-

fies the remaining conditions of 1.24. It may be noticed, however, that the

proofs of 1.22, 1.23, and hence also 1.24, can be carried through in a con-

structive way if we restrict ourselves to countable Boolean algebras. Analo-

gous remarks apply to two other theorems in our further discussion which in-

volve the notion of a separable Boolean algebra, in fact, to 2.5 and 3.10.

There are certain familiar relations between the notion of a measure and

that of an ideal (6). If / is a measure, then the set 7 of all x with fix) =0 is an

ideal different from the whole algebra A ; if in particular / is a two-valued

measure, the set J is a prime ideal. Conversely, if 7 is an ideal t^A and if we

define a function/on 7U{ 1} with/(x) =0 for x in Jand/(1) = 1, then by 1.10,

/ is a partial measure on IKJ {1} ; and if 7 is a prime ideal, then the function

g with g(x) =0 for x in 7 and g(x) = 1 for x not in 7 is a two-valued measure

(3) The argument is essentially the same as that used in proving the general representation

theorem for Boolean algebras in Stone [3, chap. IV].

(4) This follows directly from Lemma 3.16 in Tarski [3, part I, p. 61 ] (where further refer-

ences can also be found).

(6) See Birkhoff [l, p. 103], where further references to J. von Neumann and S. Ulam are

given.

(") Cf. Tarski [3, part II, pp. 55 ff.].
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on A. Hence the second part of 1.22 is simply another formulation of the

well known theorem which states that every ideal in a Boolean algebra A

which is different from A is included in a prime ideal. Similarly, condition

1.24 (iii) can be reformulated as follows: there exists in A an infinite sequence

of ideals 7o, Ii, • • • which are different from A such that every element

x^l in A belongs to at least one of them; 70, 7i, • • • can be assumed to be

prime ideals.

2. Strictly positive measure.

Definition 2.1. A measure f on a Boolean algebra A is called strictly posi-

tive if fix) =0 only for x = 0.
From a certain point of view strictly positive measure and two-valued

measure are two extreme cases in the variety of all posible measures. A meas-

ure / is strictly positive if it vanishes for only one element of the algebra; a

measure is two-valued if it vanishes on as large a set as any measure can

vanish.

The problem under which conditions a Boolean algebra A has a strictly

positive measure is essentially equivalent to the following (apparently much

more general) problem: given an algebra A and a set IÇZA, under which

conditions does there exist a measure on A which vanishes for all elements x

in 7 and for no other elements? In fact, it is easily seen that for the existence

of such a measure it is necessary and sufficient that 7 be an ideal in A and that

the quotient algebra A/I have a strictly positive measure.

No workable criteria (conditions which are both necessary and sufficient)

for the existence of a strictly positive measure in an arbitrary Boolean alge-

bra are known. We are going to establish here a few necessary conditions

(Theorem 2.4), some of which may prove to be sufficient, and also a sufficient

condition (Theorem 2.5), which however is far from being necessary. To

formulate one of the necessary conditions conveniently, we introduce the

notion of a ramification set(7) :

Definition 2.2. A set R of elements of a Boolean algebra A is called a

ramification set if (i) for any elements x and y in R, either x-y = 0 or x^y or

x^y, and (ii) for every element x in R, the set of all elements y in R with x^y is

well ordered by the relation 5ï.

For later reference we give the following theorem.

Theorem 2.3. Every set S of elements in a Boolean algebra includes a rami-

fication set R with the following property: for every element xES—R there is an

element y ER such that x-y^O and x-y^O.

Proof. There are certainly ramification sets included in S, for example, the

empty set. If Ri and Rt are ramification sets Ç5, we agree to say that

Ri<Rt if RiÇZRt and if, whenever xERi and yERt—Ri, we have xy = 0 or

x>y. The relation < thus defined establishes a partial ordering in the family

(7) Compare Kurepa [l, pp. 72 ff.].



1948] MEASURES IN BOOLEAN ALGEBRAS 481

of all ramification sets Ç5. From 2.2 it is seen that the union of any family

of ramification sets Ç.S which is well ordered by < is again a ramification set

ÇT5. Hence, by the well-ordering principle, there is a ramification set RÇ.S

which is maximal in the sense that for no ramification set R'CS which is

different from R do we have R<R'. Consequently, if xES—R, there must be

an element y ER such that x-yy^O and x-y^O; for otherwise F' = i?U{x}

would be a ramification set Ç5 with R<R'. This completes the proof.

Theorem 2.4. For an arbitrary Boolean algebra A, each of the following

conditions implies all the succeeding ones:

(i)  There is a strictly positive measure on A.

(ii) A can be represented as the union of an infinite sequence of sets So,

Si, • • •  none of which includes an infinite subset of pairwise disjoint elements.

(iii) Every uncountable subset S of A includes an uncountable subset in which

no two elements are disjoint.

(iv) Every ramification set in A is countable.

(v) Every set of pairwise disjoint elements of A is countable.

Proof. We start with the implication (i)—>(ii). If / is a strictly positive

measure on A, let S0= {o} and let Sn, for re>0, be the set of elements x for

which fix) 2:1/re. Clearly the sets 5o, Si, ■ • •  satisfy (ii).

(ii)—»(iii) : It is known that, in general (that is, independent of assumption

(ii)), every uncountable set T of elements of a Boolean algebra either includes

an infinite subset of pairwise disjoint elements or else includes an uncountable

subset no two elements of which are disjoint(8). Briefly this can be shown as

follows. Either every uncountable subset V of T has an element x disjoint

with uncountably many elements of V, or else there is an uncountable sub-

set W of F such that every element of W is disjoint with at most countably

many elements of W. If the first case holds, it is easy to construct an infinite

set of pairwise disjoint elements of F. In the second case, by well ordering

W, we can easily find an uncountable subset of W in which no two elements

are disjoint.

Now let 5 be any uncountable subset of A, and let So, Si, • • • be the se-

quence in (ii). For some re, SC\Sn is uncountable and includes no infinite sub-

set of pairwise disjoint elements. Hence, by what has just been shown, the

set SC\Sn, and therefore also 5 itself, includes an uncountable subset without

disjoint elements.

(iii)—>(iv): We first notice that (iii) obviously implies (v). Suppose now

that there is an uncountable ramification set R in A. According to (iii) there

exists an uncountable subset F of R no two elements of which are disjoint.

From 2.2 it is easily seen that F is well ordered by è- Consider the set V of

all elements v of the form v = x-y, where x and y are elements of F such that

x>y and that x>z>y holds for no z in T. Clearly V is an uncountable set of

(8) This is a consequence of a more general result in Dushnik-Miller [l ].
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pairwise disjoint elements, which contradicts (v) and hence also (iii).

(iv)—»(v): It suffices to notice that every set of pairwise disjoint elements

is a ramification set.

It is not known whether any two of the conditions (i)-(v) of Theorem 2.4

are equivalent for arbitrary Boolean algebras. Hence the problem whether

any one of the conditions (ii)-(v) is sufficient for the existence of a strictly

positive measure also remains open(9). (Regarding the equivalence of (iv)

and (v), see the last theorem in this section.)

We wish to mention here several conditions which are closely related to

conditions (i)-(v) of 2.4(10).

(ii') The algebra A can be represented as the union of an infinite sequence

of sets So, Si, ■ ■ • such that for each re every set of pairwise disjoint elements

of Sn has at most re members.

Condition (ii') is implied by (i) (as is seen from the proof of (i)—*(ii)) and

obviously implies (ii). We do not know whether (ii') is equivalent to (i) or

(ii).
(iii') Every uncountable subset S of A includes an uncountable subset T such

that every set of pairwise disjoint elements of T is finite.

Obviously, (iii) implies (iii'), and it is easily seen from the proof of (ii)

—a-(iii) that the implication in the opposite direction also holds.

(v') Every uncountable subset S of A includes an uncountable subset T such

that every set of pairwise disjoint elements of T is countable.

(v") Every uncountable subset S of A includes an infinite subset T with no

disjoint elements.

(v'") Every uncountable subset S of A contains an element x such that the

set of all elements of S which are not disjoint with x is uncountable.

Each of the conditions (v')( (v"), and (v'") obviously implies (v). From

(v) we immediately derive (v') by contradiction. To derive (v") and (v'")

from (v) we apply arguments analogous to those used in the proof of (ii)

—»(iii). In particular, in deriving (v"), we use the fact that generally every

uncountable set S of elements of an arbitrary Boolean algebra includes either

an uncountable set of pairwise disjoint elements or an infinite set of elements

no two of which are disjoint (8). We can obtain some further conditions

equivalent to (v) by replacing in (v") the words "with no disjoint elements" by

(9) The problem whether condition 2.4 (v) is sufficient for the existence of a strictly posi-

tive measure was formulated (and the rather obvious proof of the necessity of this condition

was given) in Tarski [3, part II, pp. 55 ff.]. Condition 2.4 (iii) was discussed in Knaster [l] but

not in connection with the measure problem; the problem whether 2.4 (iii) is necessary and suffi-

cient for the existence of a strictly positive measure, and to which our Theorem 2.4 gives a

partial answer, was communicated to us by E. Szpilrajn-Marczewski. It may be mentioned

that an example of a family of sets (but not of a field of sets, and hence not of a Boolean algebra)

which satisfies 2.4 (v) but not 2.4 (iii) has been found; see Knaster [l] and Szpilrajn-Marczew-

ski [2], where a construction in Sierpiñski [2] has been used.

(10) For some further related conditions cf. Knaster [l].
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"such that every set of pairwise disjoint elements of T is finite," or else by chang-

ing in (v"') the last word "uncountable" to "infinite."

(vi) Every subset of A which is well ordered by 2: is countable.

From the proof of (iii)—>(iv) we see that (v) implies (vi). In general (vi)

does not imply (v) ; for instance, the Boolean algebra constituted by all finite

subsets of an uncountable set U and by their complements with respect to

U clearly satisfies (vi) but not (v). If, however, the Boolean algebra A is

countably complete, conditions (v) and (vi) are equivalent.

As an application of 2.4 consider the Boolean algebra A of all sets of natu-

ral numbers and the family 7 of all finite sets of natural numbers. 7 is clearly

an ideal in A, and it is known that the quotient algebra A/I does not satisfy

condition (v) of 2.4, nor even condition (vi)(u). Hence there is no strictly

positive measure on .4/7; or, in other words, there is no measure on all sets of

natural numbers which vanishes on those and only those sets which are

finite.

Theorem 2.5. There is a strictly positive measure on every separable Boo-

lean algebra A.

Proof. Let a0, «i, • • • be any positive numbers with sum 1. By putting

for every set X of natural numbers

fix) = E «„,
nGX

we clearly obtain a strictly positive measure / on the algebra of all sets of

natural numbers. Hence our theorem follows immediately by 1.24.

Theorem 2.5 can also be derived, independently of 1.24, from certain re-

sults which can be found in the literature. The proof essentially reduces to the

case when the algebra A is atomless ; and in treating this case we use the fol-

lowing facts:

I. Every separable atomless Boolean algebra can be imbedded as a subalgebra

in a complete separable atomless Boolean algebra.

II. Any two complete separable atomless Boolean algebras are isomorphic.

III. The Boolean algebra of Borel sets of a bounded interval divided by the

ideal of Borel sets of the first category is a complete separable atomless Boolean

algebra.

IV. The Boolean algebra in III has a strictly positive measure^2).

(u) See Sierpiñski [3].

(u) For Statement I, compare Stone [l, p. 236] and Tarski [4, pp. 177 ff.], where further

references, in particular to H. M. MacNeille, can be found. Statement II is a result of S.

Jaákowski; see Tarski [4, p. 179]. The proof of II is exactly analogous to the proofs of well

known set-theoretical theorems which characterize the order of the set of rational numbers

and the set of real numbers; compare, for example, Sierpiñski [l, pp. 145 ff.]. Regarding

Statement III, see footnote 5. For Statement IV, see Tarski [5, p. 229] (and, in particular,

footnote 6 on that page referring to E. Szpilrajn-Marczewski).
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While conditions (ii)-(v) of 2.4 are not known to be sufficient for a Boo-

lean algebra to have a strictly positive measure, the condition of separability

in 2.5 is certainly not necessary. The Boolean algebra of all sets measurable

in the sense of Lebesgue divided by the ideal of all sets of measure 0 can serve

as a counter-example (13) ; the same applies to an arbitrary free Boolean alge-

bra with uncountably many generators. We are now going to consider a

rather special class of Boolean algebras for which all the conditions just men-

tioned except 2.4 (v) prove to be equivalent (see 2.9 below).

Definition 2.6. A Boolean algebra A is said to be an algebra with an

ordered basis B if B is a subset of A which is simply ordered by the relation S

and which generates Aiu).

Theorem 2.7. Let A be an algebra with an ordered basis B. We then have:

(i)  The set B ' = B \J {0} \J {I} is also an ordered basis of A.

(ii) If 0 and 1 are in B, every element aEA has a unique representation of

the form

a — ¿Z bii+i-bti,
•<n

where bo, • • • , &2n-i are in B, and bj<bj+iforj<2n — l.

Proof. The proof of (i) is obvious, and the proof of (ii) is essentially

known.
It can be shown that all countable Boolean algebras are algebras with an

ordered basis(16). The following representation theorem provides us with fur-

ther examples of this class of algebras.

Theorem 2.8. (i) The interval algebra of a simply ordered set {and hence

every isomorphic algebra) is a Boolean algebra with an ordered basis.

(ii) Conversely, every Boolean algebra with an ordered basis is isomorphic

with the interval algebra of a simply ordered set.

Proof, (i) If S is a set which is simply ordered by a relation <, then all

intervals of the form

E [x ES, x < b],
X

where b is an arbitrary element of S, clearly form an ordered basis of the

interval algebra of S.

(ii) Let A be a Boolean algebra with an ordered basis B. By 2.7 (i) we

may assume 0 and 1 are in B. Let B' = B— {o}. Clearly, B' is still simply

(13) Cf. Birkhoff [l, p. 103], where further references are given.

(") For this definition and for Theorems 2.7 and 2.8 (i), see Mostowski-Tarski [l],

(") This result can easily be obtained by using a theorem of Stone [2, p. 393]. (The result

was included in a joint paper of A. Mostowski and A. Tarski which was to appear in Funda-

menta Mathematicae, vol. 33, but whose manuscript was destroyed during the last war.)
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ordered by the (Boolean algebraic) relation ;£. By 2.7 (ii) every element a

in A has a unique representation

d = Z bti+i ■ bti,

where ôyGF for j<2n and ô0< • • • <ô2„_x. We correlate with a the sum/(a)

of all intervals

E [x G F, ô2i < x sí ô2i+i], i = 0, • • • , n — I.
X

As is easily seen, the function / maps A isomorphically onto the interval

algebra of B' (and not of B, since 0 does not belong to any interval sum/(a) ;

/(0) is the empty interval).

Returning to the measure problem, we obtain the following theorem.

Theorem 2.9. If A is a Boolean algebra with an ordered basis, then condi-

tions (i)-(iv) of 2.4 are equivalent to each other and also to the condition

(o) A is separable.

Proof. In view of 2.4 and 2.5 we have only to show that condition 2.4 (iv)

implies condition (o). By hypothesis, A has an ordered basis B. Let 7 be the

set of all elements ôx-ô0 where ô0 and ox are in B and ô0<ôx. Every element

i = bi-bo in 7 may be referred to as an interval, and the elements ôo, ôx as its

end points; by 2.7 (ii) every interval has exactly two end points. By 2.3, 7

includes a ramification set R with the following property: for every element

iEI—R there is an element rER such that neither ir = 0 nor i<r holds. Con-

dition 2.4 (iv) implies that R is countable. Hence the set 5 of all end points

of intervals in R is also countable ; and the same applies to the set D of all

intervals whose end points are in S. Clearly RQD and 0 is not in D. We are

going to show that D is dense in A. In fact, consider an arbitrary element

a9^0 in A. By 2.7 (ii) there is an interval ioúa. If io^r for some r in R, r is

also in D, and we have found an element in D which is included in a. Other-

wise ioEI — R- Therefore there must be an element r0 in R such that neither

io -ro = 0 nor ia i= r0 nor i0 =ä ro- If now ô0 and ox are the end points of i0, we con-

clude that one of the end points of ro, say ô2, satisfies the condition

ôo < ô2 < Ôx.

By the definition of S, we have btES. By applying the same argument to the

interval ¿x = ôx-ô2 instead of io, we conclude that there is another element

bsES such that

ôo < ô2 < Ô3 < Ôx.

We now have it — bz- b2ED and i2<i0^a. Thus the countable set D proves to

be dense in A, and A is separable. This completes the proof.
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In view of 2.8 we can reformulate 2.9 so as to make it apply directly to

ordered sets. Since intervals of an ordered set 5 are members of the interval

algebra of S, we can apply to them all Boolean algebraic notions—in particu-

lar that of a ramification set.

Theorem 2.10. Let S be a set which is simply ordered by an arbitrary rela-

tion <. Then the following conditions are equivalent :

(o) There is a countable subset D of S which is dense in S.

(i) The set S is similarly ordered to a set of real numbers {considered as a

set simply ordered by the arithmetical s= relation).

(ii) The set of all intervals in S can be expressed as the union of an infinite

sequence of sets ©o, ©i, ■ ' • none of which includes an infinite set of pairwise

disjoint intervals.

(iii) Every uncountable family of intervals in S includes an uncountable sub-

family in which no two intervals are disjoint.

(iv) Every ramification set of intervals of S is countable.

Each of these conditions implies

(v) Every set of pairwise disjoint intervals of S is countable (16).

Proof. By 2.8 (i) it suffices to show that conditions (i)-(v) of 2.4 for the

interval algebra A of S are respectively equivalent to conditions (i)-(v) of

our theorem, and that condition (o) of 2.9 is equivalent to our condition

(o). The proof is easy; we outline some portions of it.

If 2.4 (i) holds for A, we consider a strictly positive measure / on A.

Choose an arbitrary element aES and correlate with every element xES a

real number g(x) defined as follows:

g{a) = 0;

g{x) = f (E [y G S, a < y < x, y ^ a]) for a < x;
y

g{x) = — / (E [y G S, x < y < a, y ^ x]) for x < a.
v

The function g establishes the similarity of the set 5 and the set of real

numbers which are values of g; thus, 2.4 (i) implies 2.10 (i).

Assume now 2.10 (iv) to hold. We have to show 2.4 (iv) holds for A,

that is, every ramification set R of finite sums of intervals is countable. By

2.8 (i) and 2.7 (ii) every finite sum X of intervals has a "canonical" represen-

tation

_ X = Xo U • • • \J Zm_x,

(16) A related, though less general, result can be found in Knaster [l]. Specifically it is

assumed there that S is a dense continuous ordered set without first and last elements, and it is

shown that under these assumptions condition 2.10 (iii) is necessary and sufficient for 5 to be

similar to the set of all real numbers; no conditions analogous to 2.10 (ii) and 2.10 (iv) are in-

volved in that discussion.
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where Xo, • • • , Xm-i are intervals such that the union of no two of them is

an interval. If now Y is another sum of intervals such that YQX and if

F = F0 VJ • • • \J Fn_x

is its canonical representation, then, as is easily seen, each interval Fy is in-

cluded in one of the intervals AT,-. Making use of this, we replace in the rami-

fication set R each interval sum X by all the intervals occurring in its

canonical representation. It is clear that the set R' of intervals thus obtained

is again a ramification set. Hence it is countable by 2.10 (iv), and therefore R

must also be countable.

Let finally 2.10 (o) be satisfied; let D be a countable set dense in 5. We

consider the set D' consisting of all intervals with two end points, both in D,

as well as of all sets {d} with d in D, whenever these sets are intervals in the

sense accepted here. The set D' just defined is obviously countable and is

easily seen to be dense in A in the Boolean algebraic sense. Thus 2.10 (o) im-

plies 2.9 (o).

The theorem just established remains valid if by an interval of an

ordered set 5 we agree to understand what is usually called a closed interval

with two distinct end points; and if we use this convention in the definition

of density in 5 as well.

In connection with 2.9 the problem arises whether, for a Boolean algebra

with an ordered basis, condition 2.4 (v) implies (and hence is equivalent to)

those stated in 2.9. As is easily seen, this is equivalent to the problem whether,

for any given simply ordered set S, condition 2.10 (v) implies any of the

conditions (o)-(iv) of 2.10.

The likelihood of solving this problem is at present very slight since the

problem is equivalent to a famous unsolved set-theoretical problem, in fact, to

the problem of Souslin(17). By the Souslin hypothesis we understand the fol-

lowing statement:

Every simply ordered set without jumps and gaps, without first and last ele-

ments, and in which every set of pairwise disjoint intervals is countable, is similar

to the set of all real numbers.

Theorem 2.11. The Souslin hypothesis is equivalent to each of the following

statements:

(I) Every Boolean algebra which satisfies condition 2.4 (v) also satisfies

2.4 (iv).

(II) Every Boolean algebra with an ordered basis which satisfies 2.4 (v) also

satifies the remaining conditions of 2.4 as well as 2.9 (o).

(III) Every ordered set which satisfies 2.10 (v) also satisfies the remaining

conditions of 2.10.

Proof. It has been shown that the Souslin hypothesis implies, and is even

(") See Sierpiñski [l, pp. 151 ff.].
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equivalent to, the following statement:

(IV) Let S be a set of elements of a Boolean algebra such that

(i) For any two elements x, y in S, either x^y or y^x or x-y = 0.

(ii) Every subset of S of pairwise disjoint elements is countable.

(iii) Every subset of S no two elements of which are disjoint is countable.

Then the set S is itself countable (18).

To derive (I) from (IV), consider a Boolean algebra A satisfying 2.4 (v)

and a ramification set R in A. It is obvious by 2.2 that the premises (i)

and (ii) of (IV) are satisfied by R; and a simple argument shows that the

same applies to (iii). (See the proof of (iii)—>(iv) in 2.4.) Hence, by (IV), R

is countable, and (I) has been obtained.

Statement (II) follows directly from (I) by 2.9. The derivation of (III)

from (II) is very easy (compare the proof of 2.10). Finally, it is almost obvi-

ous that (III) implies the Souslin hypothesis(17).

It may be noticed that, in addition to Boolean algebras with an ordered

basis, there are also other classes of Boolean algebras for which conditions

(i)-(iv) of 2.4 are equivalent to each other and to the condition of separability.

Such is, for instance, the class of all countably distributive Boolean algebras.

This follows from the fact that every countably distributive Boolean algebra

which satisfies 2.4 (iv) is atomistic. A subclass of the class of countably dis-

tributive algebras is that constituted by all fields of sets which are countably

complete (even in the wider sense). For this subclass, condition 2.4 (v) proves

also to be equivalent to the remaining conditions of 2.4. Thus, every field of

sets which is countably complete in the wider sense and has a strictly positive

measure—or at least satisfies 2.4 (v)—is atomistic, and hence is isomorphic

with a field of sets of natural numbers(19).

We have not introduced any notion which would correspond to that of a

strictly positive measure but which, like that of partial measure, would

apply to an arbitrary subset 5 of elements of a Boolean algebra A. As a

notion of this kind we could discuss that of a strictly increasing partial

measure. A partial measure on 5 is called strictly increasing if, in addition to

conditions (i)-(iii) of 1.6, it satisfies the following condition:

(iv) If, under the hypothesis of 1.6 (ii),

(Ôo,  •  •  •   .  Ô„_x)   ¿   (do,  •   •  •   ,  «m-l)

does not hold, then

Z /(«.)< Efibù-
i<m j<n

We can establish for this notion an analogue of Theorem 1.9: when ap-

plied to a set 5 which is closed under addition and multiplication condition

(iv) can be replaced by the simpler one:

(18) Essentially the same result is to be found in Miller [l].

(19) The proof of these results, recently obtained by A. Tarski, will be published later.
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(iv')7/ x, y cire in S and x < y, then f{x) < f{y);

and when applied to the whole algebra or to a subalgebra of A, the notion of a

strictly increasing partial measure coincides with that of a strictly positive

measure. By restricting the domain of a strictly positive measure on a sub-

algebra Toi A to a set SÇZT (with 1 in S), we always obtain a strictly increas-

ing partial measure on 5. The converse does not hold in general : a strictly in-

creasing partial measure/on a set S is not always extendible to a strictly posi-

tive measure g on a subalgebra T^S. If, however, the set 5 is closed under

addition or under multiplication, and if F is the subalgebra generated by 5,

then the desired extension turns out to be possible (and, as was pointed out

in the remarks preceding 1.24, it can be carried out in exactly one way(20)).

3. Countably additive measure.

Definition 3.1. A measure f on a Boolean algebra A is called countably

additive if

/(Z«.-)=  Z fiai)

for every sequence of pairwise disjoint elements ao, ai, • • • of A provided the

sum 22*<°°ai of these elements exists.

The Boolean algebra A in 3.1 is not assumed to be countably complete.

Usually, however, the notion of a countably additive measure is applied only

to countably complete algebras.

As in the case of strictly positive measure, no workable criterion for the

existence of a countably additive measure in quite arbitrary Boolean alge-

bras seems to be known. The problem of the existence of such a measure pre-

sents sometimes considerable difficulties even when applied to particular,

rather simply defined, algebras. Consider, for example, the algebra B of all

Borel sets on a bounded interval and an ideal 7 in F which contains all one-

point sets of B but not all sets of B. The answer to the question whether the

quotient algebra B/I has a countably additive measure depends on the nature

of 7. If, for instance, 7 consists of all sets of B of the first category, the

algebra F/7 has no countably additive measure (see 3.2). If 7 consists of

(20) The result just mentioned together with some of those stated in §1 have certain impli-

cations for a class of algebraic systems which is wider than that of Boolean algebras, in fact,

for distributive lattices. As is known, every distributive lattice can be imbedded in a Boolean

algebra; see MacNeille [l]. Let now L be a distributive lattice with elements 0 and 1, and let

A be an imbedding Boolean algebra. From 1.9 (i) and 1.22 we conclude that (i) every positive

modular functional f on L with /(0) =0 and /(l) = 1 can be extended to a measure g on A. As-

sume now, in addition, that A is the smallest Boolean algebra including L. We then have, by

the remarks made at the end of §1, (ii) the extension g is uniquely determined by/; and as a

particular case of the result just stated in the text, (iii) if / is sharply positive, then g is strictly

positive in our sense. This gives another proof of a result in Smiley [l ]. For the notions involved

in this footnote, see Birkhoff [l].
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all sets of B of measure 0, B/I clearly has a countably additive measure,

which in addition is strictly positive. If 7 is the set of all countable sets of

B, B/I has again a countably additive measure but, as is easily seen from

2.4, no strictly positive measure. In no case, however, does B/I have a two-

valued countably additive measure (21).

Consider now the algebra A of all subsets of an uncountable set U and a

countably complete ideal 7 which contains all one-point subsets of U and

which is different from A. The problem whether there exists a countably

additive measure on the quotient algebra ^4/7 depends on the the power of

U. If the power of U is what is called strongly accessible from N 0 (if, for in-

stance, its power is Nx), it has been shown that the algebra .4/7 has no

countably additive measure; otherwise the problem remains open. If, how-

ever, the power of U is weakly accessible from Ko (for example, if its power

is c), the algebra .4/7 is known not to have any two-valued countably additive

measure. In the hypothetical case when the power of U is not weakly ac-

cessible from Ko, even the problem of the existence of a two-valued count-

ably additive measure remains open(22).

A rather special class of algebras without a countably additive measure is

singled out in the following theorem.

Theorem 3.2. ^4w atomless separable Boolean algebra A has no countably

additive measure.

Proof. Suppose A is atomless and separable, and let / be a countably

additive measure on A. Let Xo, x1? • • • be the elements of a countable set

which is dense in A, and let ao, cei, • • - be positive numbers with sum less

than 1. For each re, choose an element yn^xn with/(yn) <an and y^O (using

the atomlessness of A and the countable additivity off). Since

Z/(y.) < i.
n<oo

it is impossible that

Z yn = l.
n<oo

Hence there is an element x^l which includes all the elements yo, yi, • • • .

Now X5¿0, and for no re is x^x„, since x-xn^yn^0. Thus we have a contra-

diction to the hypothesis that the elements x„ form a set which is dense in A.

If A is complete, Theorem 3.2 can easily be derived from results in the

(sl) The non-existence of a countably additive measure in B/I in case I consists of all sets

of the first category follows from the results in Szpilrajn-Marczewski [l]. The fact that no

algebra B/I of the kind considered has a two-valued countably additive measure is stated

without proof in Tarski [4, p. 165].

(a) For the notions of weak and strong accessibility as well as the result concerning the

case of weak accessibility, see Tarski [3, part I, p. 49 and p. 58]. For the case of strong accessi-

bility, see Ulam [l].
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literature. In fact, as mentioned before (cf. the remarks following 2.5 and

those at the beginning of the present section), every complete separable

atomless Boolean algebra is isomorphic with the Boolean algebra of Borel

sets on a bounded interval divided by the ideal of Borel sets of the first

category, and the latter algebra has no countably additive measure.

On the other hand, we can reduce the general case considered in 3.2 to

the special case of a complete algebra by using the known fact that every

separable atomless Boolean algebra can be imbedded in a complete separable

atomless algebra A ' in such a way that every element of A ' is a sum of count-

ably many elements of ^4(23), and by showing that every countably additive

measure on A can be extended to a countably additive measure on A '.

A series of theorems follows which concern two-valued countably additive

measures.

Theorem 3.3. Every Boolean algebra A which is not atomless has a two-

valued countably additive measure. Every atomistic Boolean algebra A satisfies

the following condition :

(i) For every element a¿¿0 in A there is a two-valued countably additive

measure f on A with f{a) = 1.

Proof. If b is an atom of A, or an atom of A included in a, then, by setting

/(x)=0 or/(x) = l according as ô^x or ô^x, we obtain the desired measure.

Theorems 3.2 and 3.3 together show that, for a separable Boolean algebra

to have a countably additive measure, it is necessary and sufficient that A

be not atomless. As regards nonseparable Boolean algebras, however, this

condition is by no means necessary for the existence of a countably additive

measure, and not even for the existence of all two-valued countably additive

measures involved in 3.3 (i). In fact, as is easily seen, every countably com-

plete field of sets satisfies 3.3 (i); compare 3.5 below. On the other hand, we

can construct countably complete fields of sets which are atomless. For

example, let U be the set of all real-valued functions on the set of real num-

bers ; for any given real number a, let F{a) be the set of all those functions in

U which do not assume a as a value. The smallest countably complete field

of sets which contains all the sets F{ct) among its elements can be shown to be

atomless.

Theorem 3.4. For a Boolean algebra A to satisfy 3.3(i) it is necessary and

sufficient that A be isomorphic with a field of sets which is countably complete in

the wider sense.

Proof. To show that the condition of our theorem is necessary, we cor-

relate with every element aEA the set F{a) of all two-valued countably addi-

tive measures/with/(a) = 1. It is easily seen that the family of all sets F{a)

(23) This can easily be derived from the results quoted in footnote 12 in connection with

Statement I.
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thus obtained is a field of sets which is countably complete in the wider sense,

and that the function F maps the algebra A on this field isomorphically(3).

The proof that the condition in question is sufficient is almost obvious (see

the proof of 3.3).

Corollary 3.5. For a Boolean algebra A to be countably complete and to

satisfy 3.3 (i) it is necessary and sufficient that A be isomorphic with a count-

ably complete field of sets{2i).

Proof. It suffices to remark that every field of sets which is countably

complete in the wider sense and which is countably complete as a Boolean

algebra must be a countably complete field of sets in the usual sense.

Corollary 3.6. Every Boolean algebra A which satisfies 3.3 (i) is countably

distributive.

Proof. Every field of sets which is countably complete in the wider sense

is easily seen to be countably distributive. Hence the conclusion follows by

3.4.
The converse of 3.6 does not hold. In fact, let U be the set of all sets of

real numbers, let A he the Boolean algebra of all subsets of U, and let 7 be

the ideal of all subsets of U of power c. As was mentioned before, the quotient

algebra A/I has no two-valued countably additive measure (the power of U

being weakly accessible from Ro); nevertheless, A/1 proves to be countably

distributive. Thus, A/I provides an example of a countably complete and

countably distributive Boolean algebra which is not isomorphic with any

countably complete field of sets.

In view of the close connection between two-valued measures and prime

ideals (cf. the remarks at the end of §1), condition 3.3 (i) can be equivalently

formulated in terms of prime ideals. With condition 3.3 (i) thus reformulated,

3.4-3.6 can be extended from countably complete and countably distributive

Boolean algebras and fields of sets to algebras and fields with higher degrees

of completeness and distributivity.

We are now going to discuss measures which are both strictly positive and

countably additive. A set of necessary and sufficient conditions for the

existence of such a measure—under the assumption that the Boolean algebra

concerned is atomless and countably complete—has recently been published ;

one of these conditions is weak countably distributivity(25). As mentioned

(M) This corollary and the counter-example for Corollary 3.6 given below are to be found

in Tarski [2, §16].
(25) The set of necessary and sufficient conditions just mentioned is contained in Maharam

[l]. The weak countable distributivity of the algebra L/I, where L is the field of Lebesgue

measurable sets and / the ideal of sets of measure 0, was previously established in von Neu-

man [l, part III, pp. 16 ff.]; we also find there the proof that the algebra B/J ,where B is the

field of Borel sets and /is the ideal of sets of the first category, is not weakly countably distribu-

tive, a result which is a particular case of 3.8 below.
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in that paper, the assumption of atomlessness is not essential. However, for

algebras which are not countably complete, not all of these conditions are

necessary (26). We wish to show that, at any rate, one of the conditions in

question, namely weak countable distributivity, does hold for quite arbitrary

algebras.

Theorem 3.7. Every Boolean algebra A which has a strictly positive count-

ably additive measure is weakly countably distributive.

Proof. Let atj be a double sequence of elements of A such that a<,ySí0i,y+i

for i,j = 0, 1, • • • . Assume in addition that the product

IT Z <H,i
«oO   J<oo

exists, as well as all the products

(1) II *«
i<00

where re = (re0, «x, • • • ) is any infinite sequence of natural numbers. Let N

he the set of all infinite sequences of natural numbers. We put

d,- = 2Z ai.i   and    d = YL ai-
J<00 »<00

Consider a strictly positive countably additive measure/on A. By the count-

able additivity off, we have/(dj) =limy<00/(cz,-,y). Hence, given any positive

number e, to each i< °o we can assign an integer k¡ such that/(a,-, i^) >/(ci»)

-e/2i+1, that is/(a,--d~^) <e/2i+1. Let

(2) d = a- II a¿.fc< = «' Z âîJi-

It is known that the existence of   Z»<«>ai.*i implies that of Z»<»a"ö»,*i

and the equality

a- Z ««.*; =   Z d-d<,jfc,.(27).
«00 «00

Hence by (2)

fid) is Z/(«-«7J,-) = 2ZfiaTa~k~) < 6.
t<00 i<0O

Now suppose x is any element which includes all the products (1) for

nEN. Then

(26) The following example is due to J. L. Hodges, Jr. Let A be the field of all finite sets of

natural numbers and their complements. By 3.8, A possesses a strictly positive countably addi-

tive measure. However, it is not hard to see that A does not satisfy Maharam's condition II.

(") See Tarski [2, §15], where further references are given.
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/(*) = /( il ai,,.) = f{a) - f{d) > f{a) - e.
\   «00 /

Therefore, by the arbitrary nature of e,/(x)^/(a). But a and hence a-x in-

cludes (1) for all nEN. Therefore f(a-x) ^f(a) ^f(a-x). By the strictly posi-

tive nature of /, f(a■ x) —f(a) implies a-x = a, or a^x. Hence a is the least

upper bound of all products (1). A glance at the definition of a completes

the proof.

The converse of 3.7 certainly does not hold, for a Boolean algebra which

is weakly countably distributive—for example, a countably complete field of

sets—may not satisfy the conditions of 2.4. However, by restricting our-

selves to separable Boolean algebras, we obtain the following theorem.

Theorem 3.8. For every separable Boolean algebra A the following conditions

are equivalent: (i) A has a strictly positive countably additive measure, (ii) A is

atomistic, and (iii) A is weakly countably distributive.

Proof. Condition (i) implies (iii) by 3.7. To derive (i) from (ii), we first

assume that the algebra A is infinite. Since it is atomistic and separable, all

its atoms can be arranged in an infinite sequence (a0, a-u • • • ) without repeti-

tion of terms. We choose any infinite sequence (a0, «i, • • • ) of positive num-

bers with sum 1, and we put

/(*) = Z «i
ai~ x

for every x in A. It is easily seen that the function just defined is a strictly

positive countably additive measure on A. If A is finite, the same proof,

with obvious modifications, applies.

It remains to be shown that (iii) implies (ii). Suppose that A is not

atomistic. By definition, there is an element a^O in A which does not include

any atom. Let D be a countable set which is dense in A, and let D' be the set

of all elements d of D for which d^a. Arrange the elements of D' in a se-

quence (¿o, di, • • • ) without repetitions. It is easily seen that if a,-5^0 is

any element ¿a, we can represent a as a sum

a = 2Z ai.i
3<oo

with ai,o = ai and cij.yáczi.y+i for/ = 0, 1, • • • . For each ¿<»,we choose such

a representation with c,-,o = o-¿¿, and note that di-a-ij^O for j<<x>. Let N

be the set of all infinite sequences re = (re0, «x, • • • ) of natural numbers. We

have, for each nEN,

IT Ot.m = 0.
«oo

For otherwise there would be an element 0^0, and hence a member dk of Df
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which is included in all the elements a{,ni; but this would imply dk1kak,nk,

which is a contradiction since dk-ak.nk^® -Thus the assumption that A is not

atomistic implies

d = II Z a<.i >* Z   II a¿,«¡ — °.
¿<oo J<co nGN   t<00

which contradicts (iii). The proof is complete.

Several results stated in this and the preceding sections exhibit close con-

nections between the notions of measurability and that of distributivity of a

Boolean algebra. This connection becomes even more striking if we realize

that the atomisticity of an algebra can also be treated as a kind of distrib-

tivity; a Boolean algebra is atomistic if and only if it is completely distribu-

tive (the definition of the latter notion being obtained by an obvious modi-

fication of that of countable distributivity (28)).

In conclusion we give two theorems on the existence of measures which

are not countably additive.

Theorem 3.9. ^4re infinite Boolean algebra has a measure which is not

countably additive if and only if 1 can be expressed as the sum of an infinite

sequence of pairwise disjoint elements different from 0(29).

Proof. Suppose

Z an  =   1,
n<oo

where the elements an are pairwise disjoint and not equal to 0. Define

/(1) = 1, and f{an)=0 for re<oo. By 1.10, / is a partial measure since no

finite sum of elements an is 1. By 1.22 there is a measure g on A which agrees

with / on the domain of /. Obviously, g cannot be countably additive.

Conversely, if 1 is not the sum of an infinite sequence of distinct disjoint

elements, then no countable set of disjoint elements not equal to 0 can have

a sum, and hence every measure on A is vacuously a countably additive

measure.

An example of an algebra which does not satisfy the condition of 3.9 is

the algebra of all finite subsets of an uncountable set and their complements.

Theorem 3.10. Every infinite separable Boolean algebra A has a strictly

positive measure which is not countably additive.

Proof. By 2.5, A has a strictly positive measure/. If/ is countably addi-

tive, then A must be atomistic by 3.8. In this case, however, the element 1

can clearly be expressed as the sum of the infinite sequence of all the atoms

(28) Thus is a somewhat stronger form of a joint result of A. Lindenbaum and A. Tarski.

For the proof see Birkhoff [l, p. 93].

(M) See Tarski [4, p. 165].
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of A, and hence, by 3.9, A has another measure g which is not countably

additive. We put

h{x) = [g(x)+/(x)]/2

for every x in A. The function h just defined is easily seen to be a strictly

positive measure on A which is not countably additive.

Regarding the use of transfinite methods in this proof, the remarks follow-

ing 1.24 apply. We do not know whether Theorem 3.10 could be obtained

without the help of such methods even in the simple case when we take for A

the algebra of all sets of natural numbers.
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