On the differential equation $u_ {xx}+u_ {yy}+N(x)u=0$
HTML articles powered by AMS MathViewer
- by Martin M. E. Eichler
- Trans. Amer. Math. Soc. 65 (1949), 259-278
- DOI: https://doi.org/10.1090/S0002-9947-1949-0029055-8
- PDF | Request permission
References
- Stefan Bergman, Zur Theorie der Funktionen, die eine lineare partielle Differentialgleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 2 (1937) pp. 1169-1198.
- Stefan Bergman, Linear operators in the theory of partial differential equations, Trans. Amer. Math. Soc. 53 (1943), 130–155. MR 7555, DOI 10.1090/S0002-9947-1943-0007555-9
- Stefan Bergman, The determination of some properties of a function satisfying a partial differential equation from its series development, Bull. Amer. Math. Soc. 50 (1944), 535–546. MR 10327, DOI 10.1090/S0002-9904-1944-08183-4
- Stefan Bergman, Certain classes of analytic functions of two real variables and their properties, Trans. Amer. Math. Soc. 57 (1945), 299–331. MR 12370, DOI 10.1090/S0002-9947-1945-0012370-8
- Stefan Bergman, Functions satisfying certain partial differential equations of elliptic type and their representation, Duke Math. J. 14 (1947), 349–366. MR 22262
- Stefan Bergman, Two-dimensional subsonic flows of a compressible fluid and their singularities, Trans. Amer. Math. Soc. 62 (1947), 452–498. MR 26498, DOI 10.1090/S0002-9947-1947-0026498-1
- Josephine Mitchell, Some properties of solutions of partial differential equations given by their series development, Duke Math. J. 13 (1946), 87–104. MR 16874
- Martin Eichler, Allgemeine Integration linearer partieller Differentialgleichungen von elliptischem Typ bei zwei Grundvariablen, Abh. Math. Sem. Univ. Hamburg 15 (1947), 179–210 (German). MR 29054
- Stefan Bergman, Classes of solutions of linear partial differential equations in three variables, Duke Math. J. 13 (1946), 419–458. MR 18323
Bibliographic Information
- © Copyright 1949 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 65 (1949), 259-278
- MSC: Primary 36.0X
- DOI: https://doi.org/10.1090/S0002-9947-1949-0029055-8
- MathSciNet review: 0029055