THE DYNAMICS OF TRANSFORMATION GROUPS

BY
W. H. GOTTSCHALK() AND G. A. HEDLUND

1. Introduction. In the study of classical dynamical systems defined by
systems of ordinary differential equations, it has proved useful to regard
such a system as a one-parameter transformation group acting on a topo-
logical space. An extensive body of results concerned with such general
dynamical systems has been developed, particularly notable contributions
being due to G. D. Birkhoff (cf. Birkhoff [2, Chapter VII])(?).

If the restriction that the transformation group be a one-parameter group
is dropped and we consider the more general setting of a topological group of
transformations acting on a topological space there arises the question of the
natural and desirable generalizations of such properties as almost periodicity,
recurrence and regional recurrence. In recent papers, Barbachine [1], Gott-
schalk [3, 4, 5] and Niemytzki [6] have studied the problem of this type of
generalization. Definitions of almost periodicity have been formulated by all
of these authors and extensive results associated with this property have been
obtained by Gottschalk.

Recurrence (stability in the sense of Poisson) has been defined for trans-
formation groups by Barbachine and Niemytzki, who announce several
theorems which are analogous to the classical ones of Birkhoff. In formulating
such definitions, Barbachine assumes that the group is partially ordered and
the classification of orbits is dependent on that partial ordering. Niemytzki
essentially makes use of a partial ordering obtained by assuming that the
group is separable and locally compact, and exhausting it by an expanding
sequence of compact sets. In consequence, his definitions do not make use of
the algebraic structure of the group.

It appears to the authors that it would be desirable to formulate definitions
and develop properties which depend on the topological structures of the
group and space, on the algebraic structure of the group, and on these struc-
tures only. In the present paper such a program is initiated. The concepts of
recurrent point and regional recurrence are so defined that if the group is the
real axis, these definitions reduce to the corresponding classical ones. It is
shown that these properties are hereditary in the sense that possession of the
property by the original group implies possession of the property by any rela-
tively dense subgroup. A topological analogue of the Poincaré Recurrence
Theorem is derived, as well as a measure-theoretic generalization of that
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theorem. Several sufficiency conditions are given under which pointwise recur-
rence implies pointwise almost periodicity. Finally, it is shown how point-
wise periodicity and pointwise recurrence can be characterized by incom-
pressibility properties.

2. Definitions. Let X be a topological space and let T be an abelian
multiplicative topological group with identity e. Let T act as a transforma-
tion group on X. That is to say, suppose that to x&X and ¢t& T is assigned
a point, denoted xt, of X such that: (1) xe=x (xEX); (2) (xt)s=x(ts) (xEX;
t, s€T); (3) The function xt defines a continuous transformation of X XT
into X.

A set Sin T is said to be a semigroup provided that SSCS. A semigroup
Sin T is said to be replete provided that S contains some translate of each
compact set in 7. A set 4 in T is said to be extensive provided that 4 inter-
sects every replete semigroup in T. If x€X, then T is said to be recurrent at
x (or x is said to be recurrent under T) provided that to each neighborhood U
of x there corresponds an extensive set 4 in T such that x4 CU.

Let 3 (or R) denote the additive group of integers (or reals) provided
with its natural topology. If =3 or R, then it is easily seen that: (1) A
semigroup S in T is replete if and only if S contains a “ray”; and (2) A set 4
in T is extensive if and only if 4 contains a sequence marching to + « and a
sequence marching to — «. Thus the present notion of recurrent point under
a transformation group generalizes the usual notion of recurrent point under
a flow (T'=73 or R). We also point out that the present notion of recurrence is
intrinsic in the sense that it involves the topological structures of X and T,
the algebraic structure of T, and only these structures.

Suppose S is asemlgroup in T. It is easily verified thatif S is replete then
T =S-1S. The converse is also true in case T is discrete. However, the con-
verse may fail if T is not discrete. This is shown by the following example.
Take T'=R and take S to be a semigroup in T maximal with respect to the
property of containing only positive non-integral numbers. Thus the notion
of a replete semigroup depends on the topology of the group.

A set 4 in T is said to be relatively dense provided that T=AK for some
compact set K in T.

We assume throughout that T is not only abelian, but that T is generated by
some compact neighborhood of e and that G is a relatively dense closed subgroup
of T. The hypotheses on T ensure the existence of “sufficiently many” replete
semigroups in T. The generality of such topological groups T is indicated by
the structure theorem (cf. A. Weil [7, p. 110]) that T=K X R™X 3" where K
is a compact abelian group.

3. Recurrence is hereditary.

LemMA 1. If K is a compact set in T, then there exists a compact set H in G
such that K*M\GCH* for all integers n.
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Proof. We may suppose that T'=GK, e€K and K = K~1. Define H= K3NG.
Now H is a compact set in G and to prove the lemma it is enough to show
that K"\GCH™ for all positive integers n. Let n be a positive integer and
let s, - - -, ks be elements of K such that &, - - - k,&G. If t&T, then there
exists g&G such that tEgK—! whence g &¢K. Thus for each integer s (1 £:<n)
there exists g;&€G such that g;Ek, - - - kK. Define g.=%k; - - - k,. Clearly
g.€G and g,€k; - - kK. Now g 'g;n€EKknKCK? and gi'ginn€G
(1=i<mn) whence g 'g:n€H and g1 Eg.H (1<i<n). Also g1 ERK CK? and
21€G whence gt € H. We conclude that by « « « kn=g,E g, 1 HC g oH2C - - -
C g H1CH™. The proof is completed.

LeEMMA 2. If R is a replete semigroup in G, then there exists a replete semi-
group S in T such that SNGCR.

Proof. Let K be a symmetric compact neighborhood of e whose interior
generates T. By Lemma 1 there exists a compact set H in G such that
K*MGCH™ for all integers n. For some g&G we have gHCR. Define
S=U1 g"K~. Now S is a replete semigroup in T and SNGCUS (g"K*NG)
CU5 gnHCR. The proof is completed.

LemMA 3. If S is a replete semigroup in T, then SING is a replete semigroup
n G.

Proof. Clearly SNG is a semigroup. Let H be a compact set in G and let
K be a compact set in T for which T=GK. Since K—'H is compact, there

exists ¢ET such that tK—'HCS. Choose g&G and k€K so that t=gk. Now
gH=tk—*HCS and gHCG. Hence gHCSNG and the proof is completed.

LEMMA 4. If S is a replete semigroup in T and if K is a compact set in T
such that e K, then Nick kS is a replete semigroup in T.

Proof. Since R=Nrcx kS=Nrex (SNES) and SNES is a semigroup for
each k€K, it follows that R is a semigroup. Let C be a compact set in T and
define D=C\UK-!C. There exists t&T such that tDCS. Now k€K implies
CCDNED whence tCCtDNktD CSNES. Thus tCCR and the proof is com-
pleted.

THEOREM 1. If xéX , then G is recurrent at x if and only if T is recurrent
at x.

Proof. To prove that the recurrence of T at x implies the recurrence of G
at x it is enough by [5] to show that: (1) If 4 is a subset of G which is exten-
sive in T, then A4 is extensive in G; and (2) If 4, B, CCT such that 4 is ex-
tensive in T, C is compact and 4 CBC, then B is extensive in T. Statement
(1) follows easily from Lemma 2. Now assume the hypotheses of statement
(2). Let S be a replete semigroup in T. There exists ¢& T such that :C-1CS.
Since SNS is a replete semigroup in T by l.emma 4, ANtS>= . Hence
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BCN\tS# & and & #BNtC-1SCBNS. Thus B is extensivein T.

To prove that the recurrence of G at x implies the recurrence of T at x it
is enough to show that every extensive set in G is also extensive in T. How-
ever, this is an easy consequence of Lemma 3. The proof is completed.

The transformation group T is said to be pointwise recurrent provided that
T is recurrent at each point of X.

COROLLARY 1. G is pointwise recurrent if and only if T is pointwise recurrent.
4. Regional recurrence is hereditary.

LeEMMA 5. If R is a replete semigroup in G and if K is a compact set in T
such that e K, then there exists a replete semigroup Sin T suchthat SKNGCR.

Proof. By Lemma 2 there exists a replete semigroup Q in T such that
QNGCR. Define S=NrEx Qk~'. By Lemma 4, S is a replete semigroup in
T. Now SK CQ whence SKNGCQMNGCR. The proof is completed.

LEMMA 6. If V is a neighborkood of e and if tET, then there exists a positive
integer n such that t"€GV.

Proof. Let K be a compactset in T for which T'=GK. Choose a neighbor-
hood W of e so that WW—1C V. Let F be a finite collection of translates of W
which covers K. To each positive integer n there correspond g,&G and
k. €K such that t"=g.k,. Select positive integers p, ¢ so that p>¢ and
by, kE,EW, for some WoEF. Then tr-1=g,g; b k; ' CGhk;' CGW W5
CGWW-1CGYV and the proof is completed.

LeMMa 7. If V is a neighborhood of e, if K is a compact set in T and if
by, ko, - - - is a sequence of elements of K, then there exist finitely many positive
tntegers 1y, + + + , 1n (M21) such that 1, < + + - <3, and ki, - - - ki, EGV.

Proof. It follows readily from Lemma 6 that there exist finitely many open
sets Vi, + + -, Vmin T and positive integers py, * + -, P such that KCUL, V;
and VIiCGV (j=1, - - -, m). There exists an integer j (1 £j <m) such that
k;E V; for infinitely many positive integers 7. Define n=2p;. Choose positive
integers 41, - + -, 2, such that ;< - - -<i, and k;, - - -, k;,EV;. Hence
kiy - - - ki, EV};CGV and the proof is completed.

The transformation group T is said to be regionally recurrent provided
that to each open set U and X there corresponds an extensive set 4 in T such
that e €4 implies UNUa#= .

THEOREM 2. G is regionally recurrent if and only if T is regionally recurrent.

Proof. It follows easily from Lemma 3 that the regional recurrence of G
implies the regional recurrence of T. _

Now assume that T is regionally recurrent. Let x0&E X, let U be an open
neighborhood of x¢ and let R be a replete semigroup in G. There exists an open
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neighborhood U, of xo and a compact symmetric neighborhood V of ¢ in T
such that UesVCU. By Lemma 5 we can find a replete semigroup S in T
such that SVNGCR.

There exists &S for which UN\Us15% . Choose % & U, so that
%151€ Uy and an open neighborhood U, of x; so that Uy C U, and U;s;i C U,.
There exists s,E.S for which Ui Uis:# &. Choose x:& Uy so that x.5: <& Uy
and an open neighborhood U, of x; so that U, C U; and Uss, C U;. Continuing
this process we obtain a sequence {s:} of elements of S and a sequence { U}
of nonvacuous open sets such that U;CU;_y and U;s;CU;y (¢=1,2, - - - ).

There exists a compact set K in T for which T=GK. Hence for each
positive integer ¢ there exist g;&€G and k;EK such that s;=g;k;. By Lemma
7 we can find positive integers 1, * + *, 2, (#=1) for which 1< - - - <4, and
ki, - - - ki, €GV. Since Uysi;CUs;_, (j=2, - - -, n) and Ui 51CU,, we con-
clude that Uj,s;:, + * « s;;CUo. Also U;,CU, whence U\ Upsi, * - * si, .
Now s;, =+ -siy=gki, - + + ki, where g=g; - g, EG. Choose go&G and
v&EVso that ks, + + - kiy=gow. Thus s;, + - - s;;=ggow. Define r=s;, - - - s~
We observe that r=ggo, &SV, ggo€G and SVNGCR. Hence rER. Now
Uw™'NUos;, + + » ssp ' # F, UoCU and Uw'CU. Thus UNUr=# & and
the proof is completed. :

5. Topological and measure-theoretic recurrence theorems.

It is readily proved that if the set of recurrent points is dense in X, then
T is regionally recurrent. We now point out certain conditions under which
the converse is true. ,

Suppose that there is distinguished in T a certain class of sets called “ad-
missible.” If x& X, then T is said to be recursive at x (or x is said to be re-
cursive under T') provided that to each neighborhood U of x there corresponds
an admissible set 4 such that x4 CU. The transformation group T is said to
be regionally recursive provided that to each open set U in X there corresponds
an admissible set 4 such that e A4 implies UN\Ua# . Clearly if the class
of admissible sets is taken to be the class of extensive sets, then “recursive”
means “recurrent.”

LEMMA 8. Let S, S, - - - be a sequence of sets in T, let a set A in T be called
admissible if and only if ANS.5= & for every positive integer n, and let R de-
note the set of recursive points in X. If X is metrizable then R is a G; set in X.
If X is metrizable and if T is regionally recursive, then R is residual in X.

Proof. Let p be a metric in X compatible with the topology in X. For posi-
tive integers # and m, let E(n, m) denote the set of all points x of X such that
p(x, xs) =1/m for all s€S,. It is clear that X —R=U/~_, E(n, m). For fixed
positive integers # and m, the set E(n, m) is closed in X. Thus X —R is an
F, set and R is a G; set.

Now assume that T is regionally recursive. Let # and m be fixed positive
integers. Suppose int E(n, m) # . Then there exists an open set U in X such
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that UCE(n, m) and p(x, v) <1/m (x, yEU). Since UNUs>* & for some
sES,, we can find xE U so that xs& U whence p(x, xs) <1/m. This con-
tradicts the definition of E(n, m) and therefore int E(n, m) = &. Thus X —R
is of the first category in X and the proof is completed.

LeEMMA 9(%). There exists a sequence Sy, Ss, - - - of replete semigroups in T
such that each replete semigroup in T contains S, for some positive integer n.

Proof. According to Weil’s structure theorem (§2), T contains a compact
subgroup K and closed subgroup G =R™X 3" such that T'=KG. It is evident
that G is separable and thus there exists a sequence, gi, g2, * + +, which is
dense in G. Let U be a symmetric open neighborhood of e such that U gen-
erates T and U is compact. Define S,=UL5g U' (n=1, 2, - - ). Clearly
Sn(n=1,2, - - .)is areplete semigroup in T. Let S be a replete semigroup in
T. There exist elements t& T, k€K, g&G such that t=kgand tKTUC int S.
Choose a neighborhood V of e so that ViKTU C int S. Then for some positive
integer n, g.& Vg. Therefore g, UCVgU=Vtk~'UC int SCS. Thus S,CS
and the proof is completed.

The following theorem is a topological analogue of Theorem 4, a gen-
eralized form of the Poincaré recurrence theorem.

THEOREM 3. If X is metrizable and if T is regionally recurrent, then the set
of recurrens points is a Gs set residual in X.

Proof. By Lemma 9 there exists a sequence S, S, + « - of replete semi-
groups in T which is a “base” for the replete semigroups in T'. Clearly a set 4
in T is extensive in T if and only if ANS, & for every positive integer #.
The desired conclusion now follows immediately from Lemma 8.

COROLLARY 2. If X is a complete metric space and if T is regionally recur-
rent, then the set of recurrent points is dense in X.

COROLLARY 3. If X is a complete metric space, then the closure of the set of
recurrent points in X is exactly the maximal invariant set in X on which T s
regionally recurrent.

The following theorem is a generalization of the Poincaré recurrence
theorem.

THEOREM 4. If X is separable and metrizable, if T is separable, if u is a non-
negative countably additive measure function in X defined exactly for the Borel
sets, if u is invariant under T and if uX is finite, then almost all points of X are
recurrent.

3 In the original proof of Lemma 9, it was assumed that T was separable. The authors are
indebted to Professor J. C. Oxtoby for the modified proof presented here which permits the
omission of the hypothesis of separability and consequently the omission of that hypothesis
in Theorem 3, Corollaries 2 and 3, and Theorem 9.
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Proof. Let £, 25, - - - be a sequence of elements of T which is dense in T.
For each positive integer n define R, to be the set of recurrent points under
the discrete flow generated by powers of ¢,. Define R to be the set of recur-
rent points under 7. It is readily proved that N}3R,.CR. The Poincaré

recurrence theorem asserts that each R, (=1, 2, - - -) is a Gs set with
uR,=pX. By Lemmas 8 and 9, R is a G; set. Hence uR=uX and the proof is
completed.

6. When does pointwise recurrence imply pointwise almost periodicity?
LeEMMA 10. If A is a relatively dense set in T, then A is extensive in T.

Proof. Let S be a replete semigroup in T. There exists a compact set K in
T such that T=AK. For some t&T, tK~1CS. There exists a4 such that
tcaK. Hence a €tK~'CS and ANS# . The proof is completed.

If x€X, then T is said to be almost periodic at x (or x is said to be almost
periodic under T) provided that to each neighborhood U of x there cor-
responds a relatively dense set 4 in T such that x4 CU. The transformation
group T is said to be pointwise almost periodic provided that T is almost
periodic at each point of X.

It follows from Lemma 10 that an almost periodic point is a recurrent
point and that a pointwise almost periodic transformation group is point-
wise recurrent. The converse of the latter statement is not generally true.
(See [3, p. 764].) We now indicate several sufficiency conditions under which
the converse does hold.

LeMMA 11. If Y is a subset of X such that every replete semigroup in T con-
tains a compact set Q for which Y CYQ, then there exists a compact set C in T
for which YT=YC.

Proof. Let U be a symmetric open neighborhood of e such that U gen-
erates T and T is compact. Define H=T? and K=TU3=TUH.

We first show that there exists a positive integer # such that if k€K, then
YCUL,YE(EH)¢. To show this it is enough to prove that if keEK, then
there exists a positive integer m and a neighborhood V of e such that k€k,V
implies YCU%, Yk(kH):. Now suppose k& K. Define S=ULTko(koU)¢. The
set S is an open replete semigroup. Hence S contains a compact set Q such
that YCYQ. Choose a symmetric compact neighborhood V of e for which
VCU and QVCS. Since QV is compact, there exists a positive integer m
such that QVCURL ko(koU)? and hence YVCYQVCUL,Yko(koU). Let
kEkR)V and y& Y. Choose vEV so that ky=*kv. Then yw& Ui, YEo(koU)$
=Upr, Yko(kvU)'CUL , Yko(RH)? and y&E UL, Yk(RH)'. This completes the
proof that there exists a positive integer # such that Y€ UL, Yk(EH)® if
kEK. Let n denote such an integer.

Choose a positive integer p (p=#) so large that if by, - -+, k1 €K, then
for some n+1 of the elements &, - - -, kpy1, let ussay ki, - - -, kay1, we have
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k7 'k;eU (4, j=1, -+ -, n+1). We now show that YT C VK7, which will
complete the proof. Assume YT YK?. Then YK*H'{( YK? for otherwise
YTCUfYKiCUL, YKiCYK?. Select yE€Y and ki, - - -, k€K for
which yk; - - - k1 €E YK?. There exist n41 of the elements ky, - + -, kpy,
let ussay ki, * * -, Bny1, such that k7'k;€EU (4, j=1, - - -, n+1). Let r be a
positive integer such that r=#. It follows that ykiks - : - k,;aE VK" and
yki(kaug) « + + (Rathry1) € YK where u,, -+ + + , #,41 are elements of U for which
ko=Fkus, + + -, kpp1=ktt,y1. Thus yE & YH" and y& YT (k7 *H)'. We con-
clude that ygU?_, Yk (k7 'H) . Since k' EK, this contradicts the definition
of n. The proof is completed.

LEMMA 12. If U is an open set in X such that U is compact and if to each
compact set K in T there corresponds xS U and t&T such that xtKNU =,
then there exists a point y of U and a replete semigroup S in T such that ySNU

=g

Proof. Assume the conclusion is false. Then for each point x of U and each
replete semigroup S in T, xSN U= & whence x & US—!. Since the inverse of
a replete semigroup is a replete semigroup, it follows that for each replete
semigroup S in T, UCUS; since U is open and U is compact, we can choose
a finite set F in .S such UC UF. Thus each replete semigroup in T contains a
finite set F for which UCUF. By Lemma 11 there exists a compact set C in
T such that UT' = UC. Hence xE U and t&T implies k& UC and xtCN\U
#“ . This contradicts the hypothesis. The proof is completed.

THEOREM 5. If X is locally compact, if the collection of orbit-closures is a
partition of X, and if T is pointwise recurrent, then T is pointwise almost
periodic.

Proof. We may suppose that X is a minimal orbit-closure. Assume some
point x of X is not almost periodic. Then there exists an open neighborhood
U of x such that T is compact and such that to each compact set K in T
there corresponds t& T for which xKNU= . By Lemma 12 there exists a
point y of U and a replete semigroup S in T such that ySN\U= . Hence
x€&yS. Since y is recurrent, yS=xyT. Therefore x&yT. This is impossible
since X is assumed to be a minimal orbit-closure. The proof is completed.

The transformation group T is said to be locally weakly almost periodic
provided that if x&€X and if U is a neighborhood of x, then there exists a
neighborhood V of x and a compact set K in T such that y&V and tET im-
plies that KN U= &. It may be verified that if T is locally weakly almost
periodic, then T is pointwise almost periodic. Simple examples show that the
converse is generally false.

THEOREM 6. If X is locally compact and zero-dimensional and if T is point-
wise recurrent, then T is locally weakly almost periodic.
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Proof. Suppose x & X and U is a neighborhood of x. Choose an open closed
compact neighborhood V of x so that VCU. It is enough to show that there
exists a compact set K in T such that y&V and tET implies ¥t KNU = .
Assume this to be false. Then by Lemma 12 there exists y& V and a replete
semigroup S in T such that ySNV = . Hence y is not recurrent. This is a
contradiction and the proof is completed.

7. Recurrence and incompressibility. The following theorem characterizes
pointwise recurrence in terms of an “incompressibility” property.

THEOREM 7. In order that T be pointwise recurrent it is both necessary and
sufficient that if M be a closed set in X and S be a replete semigroup in T such
that MSCM, then MS= M.

Proof. We prove the necessity. Let M be a closed set in X, let S be a re-
plete semigroup in T and let MSC M. Choose a compact set K in T such that
K contains a symmetric open neighborhood of e which generates T. Select
tET so that H=tK CS. Define R=UJH=". Since R is a replete semigroup
in T and every point of M is recurrent, M C MR. Now MHC MSC M whence
MH"CMH (n=1,2, - - -)and MRCMH. Since M is closed and H is com-
pact, MH=MH. Thus MCMRCMH=MHCMS and the necessity is
proved.

We prove the sufficiency. Let x X and let S be a replete semigroup in 7.
Define M =xUxS. Now MSCxSCM. From hypothesis MS=M whence
M =xS and xE€xS. Thus x is recurrent and the proof is completed.

LemMA 13. If A is a nonvacuous subset of T such that every replete semigroup
in T contains a compact set Q for which A CAQ, then A is relatively dense in T.

Proof. Consider T acting as a transformation group upon itself and apply
Lemma 11.

LeEMMA 14. If S is an extensive semigroup in T, then S is relatively dense in
T.

Proof. Let R be a replete semigroup in 7. Choose t&SMNR-L Clearly
t7'&R and SCStL. The conclusion now follows from Lemma 13.

If x€ X, then T is said to be periodic at x (or x is said to be periodic under
T) provided that there exists a relatively dense subgroup 4 of T such that
x4 =x. The transformation group T is said to be pointwise periodic provided
that T is periodic at each point of x.

The following theorem characterizes pointwise periodicity in terms of an
“incompressibility” property.

THEOREM 8. In order that T be pointwise periodic it is both necessary and
sufficient that if M be a set in X and S be a replete semigroup in T such that
MSCM, then MS= M.
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Proof. We prove the necessity. Let M be a set in X and let S be a replete
semigroup in T such that MSC M. Let m& M. There exists a relatively dense
subgroup 4 of T such that m4 =m. By Lemma 10 there exists tEAMNS.
Hence m=mt& MS. The necessity is proved.

We prove the sufficiency. Let x €X and let 4 be the maximal subset of T
for which x4 =x. Now 4 is a subgroup of T. By Lemma 14 it is enough to
show that 4 is extensive in T. Let .S be a replete semigroup in T. Define
M =xUxS. Then MSC M whence MS=M and xs=x for some s&.S. There-
fore ANS#= K. The proof is completed.

8. An example.

LemMA 15. If G is a subgroup of T which is not relatively dense in T and if
K is a compact set in T, then there exists a compact set C such that every translate
of C contains a translate of K disjoint from G.

Proof. We may suppose that K contains a symmetric neighborhood of e
which generates 7. If the lemma is not true, then corresponding to each posi-
tive integer m there exists an element ¢,& T such that G intersects every
translate of K in £,K™. It follows that there exists g.&t.KMG. Since G is a
group, every translate of K in g,'t.K™ intersects G. Let K, be an arbitrary
translate of K. Choose a positive integer m so that KoK CK™. Now gmtyn' €K
and hence Kogmty' CK™ or KoC gy 'tnK™. It follows that GNK o5 & and thus
G is relatively dense in T, contrary to hypothesis.

LEMMA 16. Let Gy, Go, - - -, G be subgroups of T, each of which is not
relatively dense in T, let S be a replete semigroup in T and let Ko be a compact
subset of T. Then there exists a translate of K, contained in S and disjoint from

G
1=1Cri

Proof. By Lemma 15 there exist compact sets K, Ks, -+ - +, Kn such that
for each ¢=1, 2, - - -, m every translate of K; contains a translate of K;
disjoint from G;. Since S contains some translate of K., the conclusion fol-
lows.

LemMA 17. If T is not compact, then there exists a replete semigroup not
containing the identity.

Proof. For otherwise [e] would be relatively dense by Lemma 14 and thus
T would be compact.

LeMMA 18. If T is not compact, if S is a replete semigroup and if K is a
compact set in T, then there exists a replete semigroup S* such that S*C.S and
S*MK=.

Proof. By Lemma 17 we may suppose that S T It is enough to show that
sSNK = for some s&S and then to take S*=5S. Assume that s&S im-
plies sSNK#= & whence s€KS-!. Thus SCKS™!, T=SS'CKS'S™
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CKS-tand T=SK-1. Choosing t& T so that K~%#C.S, we have T=Tt=SK"
CSSCS. This is a contradiction and the proof is completed.

Let X be the collection of continuous functions on T to the unit interval
and let X be topologized by the compact-open topology. Let T act as a trans-
formation group on X by translation of the functions.

THEOREM 9. If Gy, Gy, * + - is a sequence of discrete infinite cyclic subgroups
in T, if each G, (n=1, 2, - - - ) is not relatively dense in T and if GiNG;
=e (15%j;1,j=1,2, - - - ), then there exists #< X such that T is recurrent at %
and each G, (n=1, 2, - - + ) is not recurrent at %.

Proof. Let K be a compact symmetric set in T such that K contains a
neighborhood of e which generates T. According to Lemmas 9 and 18 there
exists a sequence S, Ss, - - - of replete semigroups in T such that each replete
semigroup in T contains S, for certain arbitrarily large positive integers #.
Define =0 on K. According to Lemmas 16 and 18 there exists a translate
K, of K such that K;CS; and KiN(K\UG1) = &. Define % on K; by transla-
tion of & on K and define =1 on G;—(K\UK;). Then % is defined and
continuous on H;=KUK,\UG,. Extend % continuously over K? (Tietze's
Extension Theorem). According to Lemmas 16 and 18 there exists a translate
K of K2 such that K,CS: and K:N\(K2JH,\JG;)=. Define % on K, by
translation of # on K2 and define =1 on G:— (K2\UK,\UH,). Then % is de-
fined and continuous on Hy=K?JK,\JH,\UG,. Extend % continuously over
K3. According to Lemmas 16 and 18 there exists a translate K; of K3 such that
K3CS; and KsN\(K3\UH\JG;) = &. Define % on K; by translation of z on K3
and define =1 on G;— (K3\UK;3;\JH,). Thus #% is defined and continuous on
H;=K3\JK;\UH,UG;. By continuing this process we define % so that it is
continuous on K* for all positive integers #» and thus % is defined and con-
tinuous on T.

If C is any compact set in T and S is any replete semigroup in T, there
exists a positive integer m such that CC K" provided » =m. But there exists
an integer p =m such that S, C.S and thus there exists a translate C* of C such
that C* CS and % is defined on C* by translation of % on C. It follows that if U
is any neighborhood of % in X, there exists an extensive set 4 in T such that
#A CU and thus T is recurrent at . But by construction, £=0 at e€G,
and £=1 at all except a finite number of points of G,. It follows that for all
positive integers 7, G, is not recurrent at % The proof of the theorem is
completed.

COROLLARY 4. It is possible for 3 (n>1) to act as a transformation group on
some topological space X in such a manner that 3" is recurrent at some x X but
each infinite cyclic subgroup of 3" is not recurrent at x.
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