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1. Introduction. In the study of classical dynamical systems defined by

systems of ordinary differential equations, it has proved useful to regard

such a system as a one-parameter transformation group acting on a topo-

logical space. An extensive body of results concerned with such general

dynamical systems has been developed, particularly notable contributions

being due to G. D. Birkhoff (cf. Birkhoff [2, Chapter VII])(2).
If the restriction that the transformation group be a one-parameter group

is dropped and we consider the more general setting of a topological group of

transformations acting on a topological space there arises the question of the

natural and desirable generalizations of such properties as almost periodicity,

recurrence and regional recurrence. In recent papers, Barbachine [l], Gott-

schalk [3, 4, 5] and Niemytzki [6] have studied the problem of this type of

generalization. Definitions of almost periodicity have been formulated by all

of these authors and extensive results associated with this property have been

obtained by Gottschalk.

Recurrence (stability in the sense of Poisson) has been defined for trans-

formation groups by Barbachine and Niemytzki, who announce several

theorems which are analogous to the classical ones of Birkhoff. In formulating

such definitions, Barbachine assumes that the group is partially ordered and

the classification of orbits is dependent on that partial ordering. Niemytzki

essentially makes use of a partial ordering obtained by assuming that the

group is separable and locally compact, and exhausting it by an expanding

sequence of compact sets. In consequence, his definitions do not make use of

the algebraic structure of the group.

It appears to the authors that it would be desirable to formulate definitions

and develop properties which depend on the topological structures of the

group and space, on the algebraic structure of the group, and on these struc-

tures only. In the present paper such a program is initiated. The concepts of

recurrent point and regional recurrence are so defined that if the group is the

real axis, these definitions reduce to the corresponding classical ones. It is

shown that these properties are hereditary in the sense that possession of the

property by the original group implies possession of the property by any rela-

tively dense subgroup. A topological analogue of the Poincaré Recurrence

Theorem is derived, as well as a measure-theoretic generalization of that
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theorem. Several sufficiency conditions are given under which pointwise recur-

rence implies pointwise almost periodicity. Finally, it is shown how point-

wise periodicity and pointwise recurrence can be characterized by incom-

pressibility properties.

2. Definitions. Let X be a topological space and let T be an abelian

multiplicative topological group with identity e. Let T act as a transforma-

tion group on X. That is to say, suppose that to xÇ^X and ¿Ç7 is assigned

a point, denoted xt, of X such that: (1) xe=x (x£X); (2) (xt)s = x(ts) (x£AT;

/, sET); (3) The function xt defines a continuous transformation of XX.T

into X.

A set 5 in T is said to be a semigroup provided that SS(ZS. A semigroup

S in T is said to be replete provided that 5 contains some translate of each

compact set in T. A set A in T is said to be extensive provided that A inter-

sects every replete semigroup in T. If xÇHX, then T is said to be recurrent at

x (or x is said to be recurrent under T) provided that to each neighborhood U

of x there corresponds an extensive set A in T such that xA C U.

Let 3 (or 'RJ denote the additive group of integers (or reals) provided

with its natural topology. If 7=3 or %, then it is easily seen that: (1) A

semigroup 5 in T is replete if and only if 5 contains a "ray"; and (2) A set A

in T is extensive if and only if A contains a sequence marching to + =° and a

sequence marching to — oo . Thus the present notion of recurrent point under

a transformation group generalizes the usual notion of recurrent point under

a flow (T= 3 or <R). We also point out that the present notion of recurrence is

intrinsic in the sense that it involves the topological structures of X and T,

the algebraic structure of 7", and only these structures.

Suppose S is a semigroup in T. It is easily verified that if 5 is replete then

T = S~lS. The converse is also true in case 7 is discrete. However, the con-

verse may fail if 7 is not discrete. This is shown by the following example.

Take 7 = 5^. and take 5 to be a semigroup in 7 maximal with respect to the

property of containing only positive non-integral numbers. Thus the notion

of a replete semigroup depends on the topology of the group.

A set A in 7 is said to be relatively dense provided that T=AK for some

compact set K in 7.

We assume throughout that T is not only abelian, but that 7 is generated by

some compact neighborhood of e and that G is a relatively dense closed subgroup

of T. The hypotheses on 7 ensure the existence of "sufficiently many" replete

semigroups in 7. The generality of such topological groups T is indicated by

the structure theorem (cf. A. Weil [7, p. 110]) that T = KXcKmX3n where K

is a compact abelian group.

3. Recurrence is hereditary.

Lemma 1. If K is a compact set in T, then there exists a compact set H in G

such that Kni^G(ZHn for all integers n.
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Proof. We may suppose that T = GK, eGK and K = Kr1. Define 77 = K3f^G.

Now 77 is a compact set in G and to prove the lemma it is enough to show

that Knf~\GÇ_Hn for all positive integers n. Let « be a positive integer and

let kx, ■ • • , kn be elements of K such that kx • • • knGG. If tGT, then there

exists gGG such that ¿GgiT-1 whence g&K. Thus for each integer i (1 ^i<n)

there exists giGG such that giGkx • • • k¿K. Define gn = kx ■ • ■ kn. Clearly

gnGG and gnGkx • ■ • knK. Now gT^gi+xGKki+xKGK3 and gTlgi+xGG
(1 ̂ i< n) whence gïxgi+xGH and gi+xGgJI (1 Si< n). Also gxGkxKC.K3 and

gxGG whence gxGH. We conclude that kx ■ • ■ kn = gnGgn-xHGgn-2H2G • ■ •

Cgi77"_1C77n. The proof is completed.

Lemma 2. If R is a replete semigroup in G, then there exists a replete semi-

group S in T such that S(~\GCR.

Proof. Let K be a symmetric compact neighborhood of e whose interior

generates T. By Lemma 1 there exists a compact set 77 in G such that

Knf~\GGHn for all integers n. For some gGG we have gHGR- Define

S= U+Jl gnK". Now 5 is a replete semigroup in T and SCsGCVZ'x (gnKnC\G)

CU¿_" gnH"<ZR. The proof is completed.

Lemma 3. If S is a replete semigroup in T, then Sf^G is a replete semigroup

in G.

Proof. Clearly SH\G is a semigroup. Let 77 be a compact set in G and let

if be a compact set in T for which T = GK. Since K~1H is compact, there

exists tÇz.T such that tK~lH<ZS. Choose gGG and k£.K so that t = gk. Now

gH = tk~lHCZS and gHCZG. Hence gH(ZSf~\G and the proof is completed.

Lemma 4. If S is a replete semigroup in T and if K is a compact set in T

such that e(EK, then Dag« kSis a replete semigroup in T.

Proof. Since R = Ç)k^K kS = f)k^K (Sf~\kS) and Si^kS is a semigroup for

each k(E.K, it follows that R is a semigroup. Let C be a compact set in 7 and

define D = C\JK~1C. There exists ¿£7" such that tDCS. Now kEK implies

CCDf~\kD whence tCCtDC\ktDCSC\kS. Thus tCCR and the proof is com-
pleted.

Theorem 1. If xGX, then G is recurrent at x if and only if T is recurrent

at x.

Proof. To prove that the recurrence of T at x implies the recurrence of G

at x it is enough by [5] to show that: (1) If A is a subset of G which is exten-

sive in T, then A is extensive in G; and (2) If A, B, CQT such that A is ex-

tensive in 7, C is compact and A (ZBC, then B is extensive in T. Statement

(1) follows easily from Lemma 2. Now assume the hypotheses of statement

(2). Let 5 be a replete semigroup in T. There exists /£7 such that tC~lGS.

Since SÍMS is a replete semigroup in T by Lemma 4, AC\tS9i0. Hence
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BCC\tS^0 and 0^BÍMC-1SGB<^S. Thus B is extensive in T.
To prove that the recurrence of G at a: implies the recurrence of T at x it

is enough to show that every extensive set in G is also extensive in T. How-

ever, this is an easy consequence of Lemma 3. The proof is completed.

The transformation group T is said to be pointwise recurrent provided that

T is recurrent at each point of X.

Corollary l. Gis pointwise recurrent if and only if T is pointwise recurrent.

4. Regional recurrence is hereditary.

Lemma 5. If R is a replete semigroup in G and if K is a compact set in T

such that eGK,then there exists a replete semigroup S in T suchthat SKC\GGR-

Proof. By Lemma 2 there exists a replete semigroup Q in T such that

Q(~\GGR. Define S = Ç)kGic Qk~l. By Lemma 4, 5 is a replete semigroup in

T. Now SKGQ whence SKr\GCQ(~\GGR. The proof is completed.

Lemma 6. If Vis a neighborhood of e and if tGT, then there exists a positive

integer n such that tnGGV.

Proof. Let K be a compact set in T for which 7 = GK. Choose a neighbor-

hood W of e so that WW~l C V. Let F be a finite collection of translates of W

which covers K. To each positive integer n there correspond gnGG and

knGK such that tn = gnkn. Select positive integers p, q so that p>q and

k„ kqGW„ for some W0GF. Then p-' = gPk1k&1EGkpk;1CGWaW¿1

CZGWW~1GGV and the proof is completed.

Lemma 7. If V is a neighborhood of e, if K is a compact set in T and if

kx, k2, • • - is a sequence of elements of K, then there exist finitely many positive

integers it, • • ■ , in («=£l) such that ix< • • -<in and k,l • ■ • kinGGV.

Proof. It follows readily from Lemma 6 that there exist finitely many open

sets Vi, • • • , Vm in T and positive integers pi, • • • , pm such that KG^JJ-xVj

and Vj'GGV (7 = 1, • • • , m). There exists an integer j (1 ^j^m) such that

kiGVj for infinitely many positive integers i. Define n = p¡. Choose positive

integers it, ■ ■ ■ , i„ such that ix< • • -<in and jfe,-1( • • • , kinGV¡. Hence

kil • • ■ kinG VjGGV and the proof is completed.

The transformation group T is said to be regionally recurrent provided

that to each open set U and X there corresponds an extensive set A in T such

that a E^ implies UÍ\Ua9í0.

Theorem 2. G is regionally recurrent if and only if T is regionally recurrent.

Proof. It follows easily from Lemma 3 that the regional recurrence of G

implies the regional recurrence of 7.

Now assume that 7 is regionally recurrent. Let XoGX, let U be an open

neighborhood of x0 and let R be a replete semigroup in G. There exists an open
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neighborhood í/0 of x0 and a compact symmetric neighborhood V of e in T

such that Uo VG U. By Lemma 5 we can find a replete semigroup S in T

such that SVr\GGR.
There exists sxGS for which Vr0r\ljreSx^0'. Choose XiEl70 so that

xiSiEc/o and an open neighborhood Ux of xx so that UxGUo and UxSxGUo.

There exists s2GS for which Ux<^Uxs29i0. Choose x2GUx so that a^EtA

and an open neighborhood U2 of x2 so that Í/2C Ux and U2s2GUx- Continuing

this process we obtain a sequence [Si} of elements of 5 and a sequence { l7,}

of nonvacuous open sets such that UíGUí-x and UíSíGUí-x (i=l, 2, • • ■).

There exists a compact set K in T for which T = GK. Hence for each

positive integer i there exist giGG and kiGK such that Si = giku By Lemma

7 we can find positive integers ix, • ■ ■ , in (n = l) for which ix< • • -<in and

kil ■ • • kinGGV. Since UtjSfjQUij^ (j = 2, ■ ■ ■ , n) and Ui^xGUo, we con-

clude that UinSin • • ■ SijCl/o. Also UinGUo whence U0r^U0Si„ • • • síxt¿0.

Now Sin ■ ■ ■Sil = gkin • ■ ■ kit where g = g,n - ■ • gi^GG. Choose goGG and

vGVso that kin • ■ ■ kil = goV. Thus Sin ■ ■ ■ Sii = gg0v. Define r = Sin ■ ■ ■ Sitv~l.

We observe that r = gg0, rGSV, ggoGG and SVC\GGR- Hence rGR- Now

Uov-1^U0sin ■ ■ ■silv-1r¿0, UoGU and UtßTlCU. Thus UC\Ur^0 and
the proof is completed.

5. Topological and measure-theoretic recurrence theorems.

It is readily proved that if the set of recurrent points is dense in X, then

7 is regionally recurrent. We now point out certain conditions under which

the converse is true. *

Suppose that there is distinguished in T a certain class of sets called "ad-

missible." If xGX, then 7 is said to be recursive at x (or x is said to be re-

cursive under T) provided that to each neighborhood U of x there corresponds

an admissible set A such that xA G U. The transformation group T is said to

be regionally recursive provided that to each open set U in X there corresponds

an admissible set A such that aGA implies UC\Uaj¿0. Clearly if the class

of admissible sets is taken to be the class of extensive sets, then "recursive"

means "recurrent."

Lemma 8. Let Sx,S2, • • ■ be a sequence of sets in T, let a set A in T be called

admissible if and only if A(~\Snyi0 for every positive integer n, and let R de-

note the set of recursive points in X. If X is metrizable then R is a G¡ set in X.

If X is metrizable and if T is regionally recursive, then R is residual in X.

Proof. Let p be a metric in X compatible with the topology in X. For posi-

tive integers n and m, let E(n, m) denote the set of all points x of X such that

p(x, xs)^l/m for all sGSn- It is clear that X — R = \Jnh^-x E(n, m). For fixed

positive integers n and m, the set E(n, m) is closed in X. Thus X — R is an

Fa set and R is a Gj set.

Now assume that 7 is regionally recursive. Let n and m be fixed positive

integers. Suppose int E(n, m)9£0. Then there exists an open set U in X such
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that UGE(n, m) and p(x, y)<l/m (x, yGU). Since UC\Ust¿0 for some

sGS„, we can find xGU so that xsGU whence p(x, xs)<l/m. This con-

tradicts the definition of E(n, m) and therefore int E(n, m) = 0. Thus X — R

is of the first category in X and the proof is completed.

Lemma 9(3). There exists a sequence Sx, S2, ■ • • of replete semigroups in T

such that each replete semigroup in T contains Snfor some positive integer n.

Proof. According to Weil's structure theorem (§2), T contains a compact

subgroup K and closed subgroup G = <r\."lX3" such that T = KG. It is evident

that G is separable and thus there exists a sequence, gx, g2, • • • , which is

dense in G. Let U be a symmetric open neighborhood of e such that U gen-

erates 7 and U is compact. Define Sn=\jtJ\gnUi (n = l, 2, • ■ ■ ). Clearly

Sn (n = 1, 2, • • • ) is a replete semigroup in T. Let S be a replete semigroup in

T. There exist elements tGT, kGK, gGG such that t = kg and tKUG int 5.

Choose a neighborhood V of e so that VtKUG int 5. Then for some positive

integer », gnGVg. Therefore gnUGVgU= Vtk~lUC int SGS. Thus SnGS
and the proof is completed.

The following theorem is a topological analogue of Theorem 4, a gen-

eralized form of the Poincaré recurrence theorem.

Theorem 3. If X is metrizable and if T is regionally recurrent, then the set

of recurrent points is a G¡ set residual in X.

Proof. By Lemma 9 there exists a sequence Sx, S2, • • • of replete semi-

groups in 7 which is a "base" for the replete semigroups in T. Clearly a set A

in 7 is extensive in 7 if and only if AC\Snr£0 for every positive integer »,

The desired conclusion now follows immediately from Lemma 8.

Corollary 2. If X is a complete metric space and if T is regionally recur-

rent, then the set of recurrent points is dense in X.

Corollary 3. If X is a complete metric space, then the closure of the set of

recurrent points in X is exactly the maximal invariant set in X on which T is

regionally recurrent.

The following theorem is a generalization of the Poincaré recurrence

theorem.

Theorem 4. If X is separable and metrizable, if T is separable, if ¡x is a non-

negative countably additive measure function in X defined exactly for the Borel

sets, if p. is invariant under T and if pX is finite, then almost all points of X are

recurrent.

3 In the original proof of Lemma 9, it was assumed that T was separable. The authors are

indebted to Professor J. C. Oxtoby for the modified proof presented here which permits the

omission of the hypothesis of separability and consequently the omission of that hypothesis

in Theorem 3, Corollaries 2 and 3, and Theorem 9.



354 W. H. GOTTSCHALK AND G. A. HEDLUND [May

Proof. Let t\, t2, ■ ■ • be a sequence of elements of 7 which is dense in T.

For each positive integer « define Rn to be the set of recurrent points under

the discrete flow generated by powers of t„. Define R to be the set of recur-

rent points under T. It is readily proved that On^RnGR- The Poincaré

recurrence theorem asserts that each Rn (n = l, 2, ■ • • ) is a G¡ set with

¡xRn=p,X. By Lemmas 8 and 9, R is a Gj set. Hence pR=pX and the proof is

completed.

6. When does pointwise recurrence imply pointwise almost periodicity?

Lemma 10. If A is a relatively dense set in T, then A is extensive in T.

Proof. Let 5 be a replete semigroup in 7. There exists a compact set K in

T such that T=AK. For some tGT, tK~lGS. There exists aGA such that

tGaK. Hence aGtK_1GS and AC\S^0. The proof is completed.

If xGX, then 7 is said to be almost periodic at x (or x is said to be almost

periodic under T) provided that to each neighborhood U of x there cor-

responds a relatively dense set A in T such that xA C U. The transformation

group T is said to be pointwise almost periodic provided that 7 is almost

periodic at each point of X.

It follows from Lemma 10 that an almost periodic point is a recurrent

point and that a pointwise almost periodic transformation group is point-

wise recurrent. The converse of the latter statement is not generally true.

(See [3, p. 764].) We now indicate several sufficiency conditions under which

the converse does hold.

Lemma 11. If Y is a subset of X such that every replete semigroup in T con-

tains a compact set Q for which Y G YQ, then there exists a compact set C in T

for which YT= YC.

Proof. Let U be a symmetric open neighborhood of e such that U gen-

erates T and U is compact. Define 77= U2 and K=U3 = UH.

We first show that there exists a positive integer « such that if kGK, then

FCU?=1F/fe(/%77)i. To show this it is enough to prove that if k0GK, then

there exists a positive integer m and a neighborhood Voí e such that kGkoV

implies YCUT.xYk(kH)\ Now suppose k0GK. Define S=\Jt1ka(k0U)i. The
set S is an open replete semigroup. Hence S contains a compact set Q such

that FC YQ. Choose a symmetric compact neighborhood V of e for which

VGU and QVGS. Since QV is compact, there exists a positive integer m

such that QVCUlLMkoU)* and hence YVCYQVCUZ.tYk0(k0U)i. Let
kGkoV and yGY. Choose vGV so that k0 = kv. Then yvG^ZiYka(kaUy
= \JZxYkv(kvUyG\J7=xYkv(kHy and yGU?-iYk(kH)\ This completes the
proof that there exists a positive integer » such that FEU"=1F/3(&77)* if

kGK. Let » denote such an integer.

Choose a positive integer p (p^n) so large that iî kx, ■ ■ ■ , kp+xGK, then

for some » + 1 of the elements kx, ■ ■ ■ , kp+x, let us say kx, ■ ■ ■ , kn+x, we have
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KxkjGU (i, 7 = 1, • • • , M + l). We now show that YTCYK*, which will
complete the proof. Assume YT<£ YKP. Then FK>+1(£ YKP for otherwise

YTGWiYKiGUt-pYKiGYK*. Select yGY and kx, ■ • • , kp+1GK for
which yki • ■ ■ kv+iGYKv. There exist » + 1 of the elements kx, • • • , kp+x,

let us say kx, • • • , kn+x, such that K1kjGU (i, j = l, • • • , w + 1). Let r be a

positive integer such that r%n. It follows that ykxk2 • • ■ kr+xGYKr and

yki(kxu2) ■ ■ • (kxUr+x) E YKr where u2, • ■ • , ur+1 are elements of U for which

k2 = kxu2, • • • , kr+x = kxur+1. Thus yk\+1GYHr and y$Ykïl(kïlH)r. We con-

clude that yEU"=i Ykx1(kx1H)i. Since k^GK, this contradicts the definition

of n. The proof is completed.

Lemma 12. If U is an open set in X such that U is compact and if to each

compact set K in T there corresponds xGU and tGT such that xtKC\U=0,

then there exists a point y of U and a replete semigroup S in T such that ySC\ U
= 0-

Proof. Assume the conclusion is false. Then for each point x of U and each

replete semigroup .S in T, xSC\U¥i0 whence xGUS~x. Since the inverse of

a replete semigroup is a replete semigroup, it follows that for each replete

semigroup 5 in 7", UGUS; since U is open and U is compact, we can choose

a finite set F in 5 such UG UF. Thus each replete semigroup in T contains a

finite set F for which UGUF. By Lemma 11 there exists a compact set C in

T such that ¿77= Í7C. Hence xGU and tGT implies xtGUC and xtC~*C\U

9^0. This contradicts the hypothesis. The proof is completed.

Theorem 5. If X is locally compact, if the collection of orbit-do sur es is a

partition of X, and if T is pointwise recurrent, then T is pointwise almost

periodic.

Proof. We may suppose that X is a minimal orbit-closure. Assume some

point x of X is not almost periodic. Then there exists an open neighborhood

U of x such that U is compact and such that to each compact set K in T

there corresponds tGT for which xtKC\U = 0. By Lemma 12 there exists a

point y of U and a replete semigroup 5 in T such that ySf~\U=0. Hence

xGyS- Since y is recurrent, yS = yT. Therefore xGyT. This is impossible

since X is assumed to be a minimal orbit-closure. The proof is completed.

The transformation group 7 is said to be locally weakly almost periodic

provided that if xGX and if U is a neighborhood of x, then there exists a

neighborhood V of x and a compact set K in T such that yGV and t G T im-

plies that ytK!~\U^0. It may be verified that if 7 is locally weakly almost

periodic, then T is pointwise almost periodic. Simple examples show that the

converse is generally false.

Theorem 6. If X is locally compact and zero-dimensional and if T is point-

wise recurrent, then T is locally weakly almost periodic.
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Proof. Suppose xGX and U is a neighborhood of x. Choose an open closed

compact neighborhood F of x so that FC U. It is enough to show that there

exists a compact set if in 7 such that yG V and tGT implies ytKC\Uyé0.

Assume this to be false. Then by Lemma 12 there exists yGV and a replete

semigroup 5 in T such that ySC\V= 0. Hence y is not recurrent. This is a

contradiction and the proof is completed.

7. Recurrence and incompressibility. The following theorem characterizes

pointwise recurrence in terms of an "incompressibility" property.

Theorem 7. 7» order that T be pointwise recurrent it is both necessary and

sufficient that if M be a closed set in X and S be a replete semigroup in T such

that MSGM, then MS = M.

Proof. We prove the necessity. Let M be a closed set in X, let 5 be a re-

plete semigroup in 7 and let MSGM. Choose a compact set K in T such that

K contains a symmetric open neighborhood of e which generates 7. Select

tGT so that H = tKGS. Define R = U^_™177". Since R is a replete semigroup

in T and every point of M is recurrent, MGMR- Now MHGMSGM whence

MHnGMH (« = 1,2, • ■ • ) and MRGMH. Since 714" is closed and 77 is com-

pact, MH = MH. Thus MG~MRG~MH=MHGMS and the necessity is
proved.

We prove the sufficiency. Let xGX and let 5 be a replete semigroup in T.

Define M = x\JxS- Now MSGxSGM. From hypothesis MS=M whence

M = xS and xGxS- Thus x is recurrent and the proof is completed.

Lemma 13. 7/^4 is a nonvacuous subset of T such that every replete semigroup

in T contains a compact set Qfor which A GAQ, then A is relatively dense in T.

Proof. Consider 7 acting as a transformation group upon itself and apply

Lemma 11.

Lemma 14. If S is an extensive semigroup in T, then S is relatively dense in

T.

Proof. Let R be a replete semigroup in T. Choose tGSC\R~l. Clearly

t~lGR and SGSt~l. The conclusion now follows from Lemma 13.

If xGX, then T is said to be periodic at x (or x is said to be periodic under

T) provided that there exists a relatively dense subgroup A of 7 such that

xA = x. The transformation group T is said to be pointwise periodic provided

that T is periodic at each point of x.

The following theorem characterizes pointwise periodicity in terms of an

"incompressibility" property.

Theorem 8. 7» order that T be pointwise periodic it is both necessary and

sufficient that if M be a set in X and S be a replete semigroup in T such that

MSGM, then MS = M.
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Proof. We prove the necessity. Let M be a set in X and let S be a replete

semigroup in 7 such that MSGM. Let mGM. There exists a relatively dense

subgroup A of T such that mA=m. By Lemma 10 there exists tGA(~\S.

Hence m = mtGMS. The necessity is proved.

We prove the sufficiency. Let xGX and let A be the maximal subset of T

for which xA =x. Now A is a subgroup of T. By Lemma 14 it is enough to

show that A is extensive in T. Let 5 be a replete semigroup in T. Define

M = x()xS. Then MSGM whence MS=M and xs=x for some sGS. There-

fore A(~\Sji0. The proof is completed.

8. An example.

Lemma 15. If G is a subgroup of T which is not relatively dense in T and if

K is a compact set in T, then there exists a compact set C such that every translate

of C contains a translate of K disjoint from G.

Proof. We may suppose that K contains a symmetric neighborhood of e

which generates T. If the lemma is not true, then corresponding to each posi-

tive integer m there exists an element tmGT such that G intersects every

translate of K in tmKm. It follows that there exists gmGtmKr\G. Since G is a

group, every translate of K in g^ltmKm intersects G. Let K0 be an arbitrary

translate of K. Choose a positive integer m so that K0KGKm. Now gm&GK

and hence KBgmt~lGKm or K[¡Ggm1tmKm. It follows that GC\Ko9i0 and thus

G is relatively dense in 7, contrary to hypothesis.

Lemma 16. Let Gx, G2, • ■ ■ , Gm be subgroups of T, each of which is not

relatively dense in T, let S be a replete semigroup in T and let K0 be a compact

subset of T. Then there exists a translate of K0 contained in S and disjoint from

ur=1Gi.

Proof. By Lemma 15 there exist compact sets Kx, K2, • • • , Km such that

for each i = l, 2, ■ ■ ■ , m every translate of K, contains a translate of JC,_i

disjoint from Gi. Since 5 contains some translate of Km, the conclusion fol-

lows.

Lemma 17. If T is not compact, then there exists a replete semigroup not

containing the identity.

Proof. For otherwise [e] would be relatively dense by Lemma 14 and thus

T would be compact.

Lemma 18. If T is not compact, if S is a replete semigroup and if K is a

compact set in T, then there exists a replete semigroup S* such that S*GS and

S*C\K = 0.

Proof. By Lemma 17 we may suppose that S^T. It is enough to show that

sSC\K = 0 for some sGS and then to take S* = sS. Assume that sGS im-

plies   sSr\K^0   whence   sGKS-\   Thus   SGKS~\   T = SS~1GKS-1S~1
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GKS-1 and 7 = SK~K Choosing tGT so that K~HGS, we have T=Tl = SK~H
GSSGS. This is a contradiction and the proof is completed.

Let X be the collection of continuous functions on T to the unit interval

and let X be topologized by the compact-open topology. Let 7 act as a trans-

formation group on X by translation of the functions.

Theorem 9. If Gx, G2, • • ■ is a sequence of discrete infinite cyclic subgroups

in T, if each G„ (w = l, 2, • • • ) is not relatively dense in T and if di^Gj

= e (i^j; i,j = l, 2, • • •), then there exists xGX such that T is recurrent at x

and each G„ (» = 1, 2, ■ • ■ ) is not recurrent at x.

Proof. Let K be a compact symmetric set in T such that K contains a

neighborhood of e which generates T. According to Lemmas 9 and 18 there

exists a sequence Si, S2, • • • of replete semigroups in T such that each replete

semigroup in T contains S„ for certain arbitrarily large positive integers ».

Define x = 0 on K. According to Lemmas 16 and 18 there exists a translate

Kx of K such that ÜTiCSi and Kif\(KVJGi) = 0. Define * on Kx by transla-

tion of x on K and define x = l on Gx—(K\JKx). Then x is defined and

continuous on Hx = KVJKxUGx. Extend x continuously over K2 (Tietze's

Extension Theorem). According to Lemmas 16 and 18 there exists a translate

K2 of K2 such that K2GS2 and K2C\(K2\JH¿JG2)=0. Define x on K2 by

translation of x on K2 and define x = l on G2 — (K2\JK2KJHx). Then x is de-

fined and continuous on H2 = K2\JK2\JHx^JG2. Extend x continuously over

K3. According to Lemmas 16 and 18 there exists a translate K3 of K3 such that

K3GS3 and K3r\(K3KJH2\JG3) = 0. Define x on K3 by translation of x on K3

and define x=l on G3—(K3VJK3VJH2). Thus x is defined and continuous on

H3 = K3VJK3\JH2\JG3. By continuing this process we define x so that it is

continuous on Kn for all positive integers » and thus x is defined and con-

tinuous on T.

If C is any compact set in 7 and S is any replete semigroup in 7, there

exists a positive integer m such that CGKn provided « ¡im. But there exists

an integer p = m such that SPGS and thus there exists a translate C* of C such

that C*CS and x is defined on C* by translation of x on C. It follows that if U

is any neighborhood of x in X, there exists an extensive set A in T such that

xAGU and thus T is recurrent at x. But by construction, x = 0 at eGGn

and x = 1 at all except a finite number of points of G„. It follows that for all

positive integers », G„ is not recurrent at x. The proof of the theorem is

completed.

Corollary 4. It is possible for 3n («>1) to act as a transformation group on

some topological space X in such a manner that 3" is recurrent at some xGX but

each infinite cyclic subgroup of 3" is not recurrent at x.
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