Incidence relations in unicoherent spaces
Author:
A. H. Stone
Journal:
Trans. Amer. Math. Soc. 65 (1949), 427-447
MSC:
Primary 56.0X
DOI:
https://doi.org/10.1090/S0002-9947-1949-0030743-8
MathSciNet review:
0030743
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
P. Alexandroff, Sur les multiplicités cantoriennes et le théorème de Phragmén-Brouwer généralisé, C. R. Acad. Sci. Paris vol. 183 (1926) pp. 722-724.
P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.
- R. E. Basye, Simply connected sets, Trans. Amer. Math. Soc. 38 (1935), no. 2, 341–356. MR 1501814, DOI https://doi.org/10.1090/S0002-9947-1935-1501814-1 K. Borsuk, Quelques théorèmes sur les ensembles unicohérents, Fund. Math. vol. 17 (1931) pp. 171-209. ---, Über die Abbildungen der metrischen kompacten Räume auf die Kreislinie, Fund. Math. vol. 20 (1933) pp. 224-231. ---, Über den Lusternik-Schnirelmannsche Begriff der Kategorie, Fund. Math. vol. 26 (1936) pp. 123-136. E. Čech, Sur les continus Péaniens unicohérents, Fund. Math. vol. 20 (1933) pp. 232-243. S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. vol. 26 (1936) pp. 61-112. ---, Sur les espaces multicohérents I, Fund. Math. vol. 27 (1936) pp. 153-190.
- Samuel Eilenberg and E. W. Miller, Zero-dimensional families of sets, Bull. Amer. Math. Soc. 47 (1941), 921–923. MR 5332, DOI https://doi.org/10.1090/S0002-9904-1941-07589-0
- P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091. MR 18807, DOI https://doi.org/10.1090/S0002-9904-1946-08715-7
- D. W. Hall and A. D. Wallace, Some invariants under monotone transformations, Bull. Amer. Math. Soc. 45 (1939), no. 4, 294–295. MR 1563969, DOI https://doi.org/10.1090/S0002-9904-1939-06964-4 B. Knaster, Ein Zerlegungssatz über unikohärente Kontinua, Verhandlungen International Mathematische Kongress, Zurich, 1932 (2) p. 193. B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fund. Math. vol. 2 (1921) pp. 206-255. C. Kuratowski, Sur les continus de Jordan et le théorème de M. Brouwer, Fund. Math. vol. 8 (1926) pp. 137-150. ---, Une charactérisation topologique de la surface de la sphère, Fund. Math. vol. 13 (1929) pp. 307-318.
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722 ---, Concerning upper semi-continuous collections of continua which do not separate a given continuum, Proc. Nat. Acad. Sci. U. S. A. vol. 10 (1924) pp. 356-360.
- R. L. Moore, Concerning intersecting continua, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 544–550. MR 7481, DOI https://doi.org/10.1073/pnas.28.12.544
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge, At the University Press, 1951. 2nd ed. MR 0044820 B. Pospíšil, Trois notes sur les espaces abstraits, Publications de la Faculté des Sciences de l’Université Masaryk, No. 249, Brno, 1937.
- M. Rueff, Üeber die Unikohärenz n-dimensionaler Polyeder, Comment. Math. Helv. 7 (1934), no. 1, 14–23 (German). MR 1509497, DOI https://doi.org/10.1007/BF01292705
- A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. MR 26802, DOI https://doi.org/10.1090/S0002-9904-1948-09118-2 S. Straszewicz, Über die Zerschneidung der Ebene durch abgeschlossene Mengen, Fund. Math. vol. 7 (1925) pp. 159-187.
- A. D. Wallace, Separation spaces, Ann. of Math. (2) 42 (1941), 687–697. MR 4756, DOI https://doi.org/10.2307/1969257 ---, A characterization of unicoherence, Bull. Amer. Math. Soc. Abstract 48-11-345. G. T. Whyburn, A junction property of locally connected sets, Bull. Amer. Math. Soc. Abstract 37-9-309.
- G. T. Whyburn, Semi-closed sets and collections, Duke Math. J. 2 (1936), no. 4, 685–690. MR 1545959, DOI https://doi.org/10.1215/S0012-7094-36-00259-4 ---, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942. R. L. Wilder, A property which characterizes continuous curves, Proc. Nat. Acad. Sci. U. S. A. vol. 11 (1925) pp. 725-728.
- W. A. Wilson, On the Phragmén-Brouwer theorem, Bull. Amer. Math. Soc. 36 (1930), no. 2, 111–114. MR 1561900, DOI https://doi.org/10.1090/S0002-9904-1930-04901-0
- Gail S. Young Jr., The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479–494. MR 16663, DOI https://doi.org/10.2307/2371828
Retrieve articles in Transactions of the American Mathematical Society with MSC: 56.0X
Retrieve articles in all journals with MSC: 56.0X
Additional Information
Article copyright:
© Copyright 1949
American Mathematical Society