An application of Banach linear functionals to summability
HTML articles powered by AMS MathViewer
- by Albert Wilansky
- Trans. Amer. Math. Soc. 67 (1949), 59-68
- DOI: https://doi.org/10.1090/S0002-9947-1949-0032025-7
- PDF | Request permission
References
- Ralph Palmer Agnew, On ranges of inconsistency of regular transformations, and allied topics, Ann. of Math. (2) 32 (1931), no. 4, 715–722. MR 1503024, DOI 10.2307/1968314
- Ralph Palmer Agnew, Summability of subsequences, Bull. Amer. Math. Soc. 50 (1944), 596–598. MR 10616, DOI 10.1090/S0002-9904-1944-08201-3
- Ralph Palmer Agnew, Convergence fields of methods of summability, Ann. of Math. (2) 46 (1945), 93–101. MR 11334, DOI 10.2307/1969149 S. Banach Théorie des opérations linéaires, Warsaw, 1932.
- A. Brudno, Summation of bounded sequences by matrices, Rec. Math. [Mat. Sbornik] N.S. 16(58) (1945), 191–247 (Russian, with English summary). MR 0012340
- J. D. Hill, On perfect methods of summability, Duke Math. J. 3 (1937), no. 4, 702–714. MR 1546024, DOI 10.1215/S0012-7094-37-00358-2
- St. Mazur, Über lineare Limitierungsverfahren, Math. Z. 28 (1928), no. 1, 599–611 (German). MR 1544979, DOI 10.1007/BF01181185 —Eine Anwendung der Theorie der Operationen bei der Untersuchung der Toeplitzschen Limitierungsverfahren (Prize-winning paper), Studia Mathematica vol. 2 (1930) pp. 40-50. H. Steinhaus Some remarks on the generalization of the notion of limit (in Polish), Prace Matematycznofizyczne vol. 22 (1911) pp. 121-134.
Bibliographic Information
- © Copyright 1949 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 67 (1949), 59-68
- MSC: Primary 40.0X
- DOI: https://doi.org/10.1090/S0002-9947-1949-0032025-7
- MathSciNet review: 0032025