ON THE ZEROS OF SUCCESSIVE DERIVATIVES OF INTEGRAL FUNCTIONS

BY

SHEILA SCOTT MACINTYRE

1. The Gontcharoff polynomials

\[G_0(z) = 1; \quad G_n(z; z_1, z_2, \ldots, z_n) = \int_{z_1}^{z} dz' \int_{z_2}^{z'} dz'' \cdots \int_{z_n}^{z^{(n-1)}} dz^{(n)} \quad (n \geq 1) \]

have applications to a certain class of interpolation problem (Whittaker [7]). In this paper I obtain some formulae connected with these polynomials and use them to improve and extend a theorem due to Levinson [3, 4], and to shorten the proof of and extend a theorem due to Schoenberg [6].

Levinson's Theorem. If \(f(z) \) is an integral function satisfying

\[\limsup_{r \to \infty} \frac{\log M(r)}{r} < 0.7199, \]

and if \(f(z) \) and each of its derivatives have at least one zero in or on the unit circle, then \(f(z) = 0 \).

The constant 0.7199 is not the "best possible" but cannot be replaced [5] by a number as great as 0.7378.

The "best possible" value of this constant is known as the Whittaker constant \(W \). Among new results in this paper, I prove that \(W \) cannot be less than 0.7259.

Schoenberg's Theorem. If \(f(z) \) is an integral function satisfying

\[\limsup_{r \to \infty} \frac{\log M(r)}{r} < \frac{\pi}{4}, \]

and if \(f(z) \) and each of its derivatives have at least one zero in the segment \(-1 \leq x \leq 1\) of the real axis, then \(f(z) = 0 \).

The constant \(\pi/4 \) is the "best possible" as shown by the example \(\cos(\pi z/4) + \sin(\pi z/4) \).

I have to thank Mr. M. H. Quenouille and his staff of computers, Statistics Department, Aberdeen University, for performing the calculations arising in §3.

Presented to the Society, October 30, 1948; received by the editors August 17, 1948.

(*) Numbers in brackets refer to the references cited at the end of the paper.

241
2. Following the notation used by Levinson [3], let
\[H_0(z) = 1; \quad H_n(z_1, z_2, \ldots, z_n) = G_n(0; z_1, z_2, \ldots, z_n) \quad (n \geq 1), \]
\[M_n = \max \left| G_n(z_0; z_1, z_2, \ldots, z_n) \right| \quad (\text{all } |z_r| \leq 1), \]
\[L_n = \max \left| H_n(z_1, z_2, \ldots, z_n) \right| \quad (\text{all } |z_r| \leq 1). \]

We first require two inequalities (2.1) and (2.4) due to Levinson and (for the sake of completeness) give his proof. Since by definition
\[G_n(z_0; z_1, \ldots, z_n) = H_n(z_1, z_2, \ldots, z_n) - H_n(z_0, z_2, \ldots, z_n), \]
therefore, by Taylor's Theorem
\[G_n(z_0; z_1, z_2, \ldots, z_n) = \sum_{r=0}^{n} \frac{(z_1)^{r}}{r!} H_{n-r}(z_{r+1}, z_{r+2}, \ldots, z_n) - \sum_{r=0}^{n} \frac{(z_0)^{r}}{r!} H_{n-r}(z_{r+1}, z_{r+2}, \ldots, z_n). \]

Hence
\[\left| G_n(z_0; z_1, \ldots, z_n) \right| \leq \sum_{r=0}^{n} \frac{|z_1 - z_0|^r}{r!} L_{n-r} \]
and, if we write \(2\alpha = \arg z_1 - \arg z_0 \),

\[(2.1) \quad M_n \leq \max_{0 \leq \alpha \leq \pi/2} \left\{ \sum_{r=0}^{n} \frac{2|\sin r\alpha|}{r!} L_{n-r} \right\}. \]

By Euler's formula for homogeneous functions,
\[nG_n = \sum_{r=0}^{n} z_r \frac{\partial G_n}{\partial z_r}, \]
and since
\[(2.2) \quad \frac{\partial G_n}{\partial z_0} = G_{n-1}(z_0; z_2, \ldots, z_n), \]
\[(2.3) \quad \frac{\partial G_n}{\partial z_r} = -G_{r-1}(z_0; z_1, \ldots, z_{r-1}) \times G_{n-r}(z_r; z_{r+1}, \ldots, z_n) \quad (r \geq 1), \]
we have the inequality
\[(2.4) \quad nM_n \leq M_{n-1} + \sum_{r=1}^{n} M_{r-1}M_{n-r}. \]

It is obvious, as Levinson points out, that \(L_1 = 1, \quad L_2 = 3/2, \quad M_1 = 2, \) and hence from (2.1) he obtains \(M_2 \leq (3/2)3^{1/2} < 2.5981, \quad M_3 < 3.6379. \) By special
choice of the z_r he shows that these values are “accurate” and that in fact $M_2 = (3/2)^{3/2}$ and $M_3 > 3.6378$. It can also be proved [4] that $L_3 = 2^{-1} [2(5)^{1/2} + 3]^{1/2} + 6^{-1} [6(5)^{1/2} - 2]^{1/2} < 1.9299$, and again, by use of (2.1) he obtains [4] $M_4 < 4.8414$. He then uses (2.4) to find upper bounds for M_6, M_8, M_7, M_8, M_8, and (by induction) M_n. In fact $M_n \leq r^{n+1} (n>1)$ where $r < 1.389$. He remarks that this method would presumably yield a better value of r if accurate values of some further members of the sequence M_n were worked out before resorting to the use of formula (2.4). However the problem of determining L_4 or M_8 exactly is not simple and for higher L_n, M_n, this does not seem a very promising line of approach.

3. It is, however, possible to obtain upper bounds for L_4, and so on, by using another iteration formula involving both sequences L_n and M_n. For Euler’s formula gives

$$H_n = \sum_{r=1}^{n} z_r \frac{\partial H_n}{\partial z_r}$$

and since

$$\frac{\partial H_n}{\partial z_r} = - H_{r-1}(z_1, z_2, \ldots, z_{r-1}) \times G_{n-r}(z_r, z_{r+1}, \ldots, z_n),$$

we have the inequality

$$(3.1) \quad nL_n \leq \sum_{r=1}^{n} L_{r-1} M_{n-r}.$$

In particular, when $n = 4$, $4L_4 \leq L_0 M_4 + L_1 M_2 + L_2 M_1 + L_3 M_0$, yielding $L_4 < 2.7915$, and (2.1) gives $M_5 \leq \max_{0 \leq \alpha \leq \pi/2} \phi_5(\alpha)$ where

$$\phi_5(\alpha) = 5.5830 |\sin \alpha| + 1.9299 |\sin 2\alpha| + (1/2) |\sin 3\alpha| + (1/12) |\sin 4\alpha| + (1/60) |\sin 5\alpha|.$$

The maximum on this curve lies between 70°27′ and 70°28′ and shows that $M_5 < 6.8223$.

Proceeding in this way by alternate use of (2.1) and (3.1), we find upper bounds for L_6, L_8, L_9, L_9, L_{10}; M_6, M_7, M_8, M_8, and M_{10} (see appendix). The curves whose maxima have to be determined may be taken as

$$\phi_6(\alpha) = 7.6112 |\sin \alpha| + 2.7915 |\sin 2\alpha| + 0.6433 |\sin 3\alpha| + (1/8) |\sin 4\alpha| + (1/60) |\sin 5\alpha| + (1/360) |\sin 6\alpha|$$

(maximum between 69°31′ and 69°32′),

$$\phi_7(\alpha) = 10.5078 |\sin \alpha| + 3.8056 |\sin 2\alpha| + 0.9305 |\sin 3\alpha| + 0.1609 |\sin 4\alpha| + (1/40) |\sin 5\alpha| + (1/360) |\sin 6\alpha| + 2/7!$$

(maximum between 69°54′ and 69°55′).
\[\phi_8(\alpha) = 14.4630 | \sin \alpha | + 5.2539 | \sin 2\alpha | + 1.2686 | \sin 3\alpha | \\
+ 0.2327 | \sin 4\alpha | + 0.0322 | \sin 5\alpha | + (1/240) | \sin 6\alpha | \\
+ 2/7! + 2/8! \quad (\text{maximum between } 69^\circ 49' \text{ and } 69^\circ 51'), \]

\[\phi_9(\alpha) = 19.926924 | \sin \alpha | + 7.2320 | \sin 2\alpha | + 1.7513 | \sin 3\alpha | \\
+ 0.31714 | \sin 4\alpha | + 0.04653 | \sin 5\alpha | + 0.00537 | \sin 6\alpha | \\
+ 3/7! + 2/8! + 2/9! \quad (\text{maximum between } 69^\circ 49' \text{ and } 69^\circ 51'), \]

\[\phi_{10}(\alpha) = 27.4424 | \sin \alpha | + 9.9635 | \sin 2\alpha | + 2.4105 | \sin 3\alpha | \\
+ 0.437825 | \sin 4\alpha | + 0.0634267 | \sin 5\alpha | + 0.0077542 | \sin 6\alpha | \\
+ 3.8598/7! + 3/8! + 2/9! + 2/10! \quad (\text{maximum between } 69^\circ 49' \text{ and } 69^\circ 51'). \]

It can be verified by direct computation that

\[(3.2) \quad M_k < 2(1.3775)^{k+1} \quad (k = 1, 2, 3), \]

\[(3.3) \quad M_k < (1.3775)^{k+1} \quad (k = 4, 5, 6, 7, 8, 9, 10), \]

\[(3.4) \quad L_k < (1.3775)^k \quad (k = 1, 2, 3, 4), \]

\[(3.5) \quad L_k < 0.7692(1.3775)^k \quad (k = 5, 6, 7, 8, 9, 10). \]

From (3.1) we have

\[n L_n < M_{n-1} + M_{n-2} + 1.5 M_{n-3} + 1.9299 M_{n-4} + 2.7915 M_{n-5} \]

\[+ \sum_{r=6}^{n-5} L_{r-1} M_{n-r} + 4.8414 L_{n-5} + 3.6379 L_{n-4} + 2.5981 L_{n-3} \]

\[+ 2 L_{n-2} + L_{n-1}. \]

If we assume (3.3) and (3.5) are satisfied also for \(11 \leq k \leq n-1 \), then (3.6) gives, if we write \(\gamma = 1.3775, \mu = 0.7692, \)

\[n L_n < \gamma^n + \gamma^{n-1} + 1.5 \gamma^{n-2} + 1.9299 \gamma^{n-3} + 2.7915 \gamma^{n-4} \]

\[+ \mu [(n - 10) \gamma^n + 4.8414 \gamma^{n-3} + 3.6379 \gamma^{n-4} + 2.5981 \gamma^{n-3} \]

\[+ 2 \gamma^{n-2} + \gamma^{n-1}] < n \mu \gamma^n + 0.0005 \gamma^{n-5}. \]

Hence \(L_n < \mu \gamma^n \).

This proves (3.5) is true for all \(k \geq 11 \), by induction.

From (2.1) for \(n \geq 11 \),

\[M_n \leq \max_{0 \leq \alpha \leq \pi/2} \left\{ \sum_{r=1}^{6} \frac{2 | \sin r \alpha |}{r!} L_{n-r} \right\} + \sum_{r=7}^{n} \frac{2}{r!} L_{n-r} \]

\[< \mu \gamma^{n-7} \max_{0 \leq \alpha \leq \pi/2} \Phi(\alpha) + \sum_{r=7}^{n} \frac{2}{r!} \gamma^{7-r} \]
where
\[\Phi(\alpha) = \sum_{r=1}^{8} \frac{2 | \sin r\alpha |}{r!} \gamma^{r-r}, \]
which has its maximum between 69°49' and 69°51', giving
\[\max_{0 \leq \alpha \leq \pi/2} \Phi(\alpha) < 16.8520. \]

Hence
\[M_n < 16.8520 \mu \gamma^{n-7} + \gamma^{n-7} \left[\frac{2}{7!} + \frac{2}{8!} \frac{1}{\gamma} + \frac{2}{9!} \frac{1}{\gamma^2} + \cdots \right] \]
\[< 16.8520 \mu \gamma^{n-7} + \gamma^{n-7} \left[\frac{1}{7!} \frac{1}{8\gamma} + \frac{1}{(8\gamma)^2} + \cdots \right] \]
\[= 16.8520 \mu \gamma^{n-7} + \frac{2\gamma^{n-7}}{7!(1 - 1/8\gamma)} \]
\[< \gamma^{n-7} [12.9626 + 0.0006] \]
\[< \gamma^{n+1}. \]

This proves (3.3) for all \(k \geq 11 \), by induction.

Since \(G_n \) is analytic in the \(z_r \) it follows that its maximum modulus is assumed when each \(z_r \) is on the circumference of the unit circle. Thus we have the following theorem.

Theorem I. If \(z_r \) is a sequence of points in the unit circle, then
\[M_n = \max |G_n(z_0; z_1, z_2, \ldots, z_n)| < (1.3775)^{n+1} \quad (n \geq 4). \]

4. Now consider the Gontcharoff polynomials for the case discussed by Schoenberg, namely \(G_n(x; x_1, x_2, \ldots, x_n) \) where
\[-1 \leq x_r \leq +1 \quad (1 \leq r \leq n).\]

Consider any one of the \(2^{n-r} \) polynomials
\[G_n(x; x_1, x_2, \ldots, x_r, \pm 1, \pm 1, \ldots, \pm 1) \quad (1 \leq r \leq n), \]
\[\frac{\partial G_n}{\partial x_r} = -G_{n-1}(x_1, x_2, \cdots, x_{r-1}) \times G_{n-r}(x_r, \pm 1, \pm 1, \cdots). \]

As \(x_r \) varies between \(-1\) and \(+1\), keeping \(x_1, x_2, \cdots, x_{r-1} \) fixed, \(\partial G_n/\partial x_r \) is of constant sign, that is, \(G_n(x; x_1, \cdots, x_r, \pm 1, \pm 1, \cdots, \pm 1) \) increases or decreases steadily. Hence \(|G_n(x; x_1, \cdots, x_r, \pm 1, \pm 1, \cdots, \pm 1)| \) attains its maximum when \(x_r \) is an end point.

If we take \(r = 1, 2, \cdots, n \), it follows that \(|G_n(x; x_1, \cdots, x_n)| \) \((-1 \leq x_r \leq +1, \cdots, \leq +1)\)
attains its maximum for any given value of \(x \) \((-1 \leq x \leq 1)\) when \(x_r = \pm 1 \) \((1 \leq r \leq n)\).

So, in order to find an upper bound for \(|G_n(x; x_1, x_2, \ldots, x_n)| \) \((-1 \leq x_r \leq 1)\), it is sufficient to consider the \(2^n\) polynomials \(|G_n(x; \pm 1, \pm 1, \ldots, \pm 1)| \) \((-1 \leq x \leq 1)\).

Clearly if \(0 \leq x \leq 1 \) and \(x_r = \pm 1 \),

\begin{equation}
|G_n(x; 1, x_2, \ldots, x_n)| = |G_n(-x; -1, -x_2, \ldots, -x_n)| \leq |G_n(0; -1, -x_2, \ldots, -x_n)| \leq |G_n(x; -1, -x_2, \ldots, -x_n)|.
\end{equation}

I shall prove that if \(0 \leq x \leq 1 \) and \(x_r = \pm 1 \) \((1 \leq r \leq n)\) for all \(n \),

\begin{equation}
|G_n(x; x_1, x_2, \ldots, x_n)| \leq 2 \left(\frac{4}{\pi} \right)^{n-1} \sin \frac{\pi}{4} (x + 1).
\end{equation}

By (4.2), it is sufficient to prove (4.3) for the case \(x_1 = -1 \), that is, it is sufficient to prove

\begin{equation}
|G_n(x; -1, +1, x_3, \ldots, x_n)| \leq 2 \left(\frac{4}{\pi} \right)^{n-1} \sin \frac{\pi}{4} (x + 1)
\end{equation}

and

\begin{equation}
|G_n(x; -1, -1, x_3, \ldots, x_n)| \leq 2 \left(\frac{4}{\pi} \right)^{n-1} \sin \frac{\pi}{4} (x + 1).
\end{equation}

Proof of (4.4).

\[|G_{n+1}(x; -1, +1, x_3, \ldots, x_{n+1})| = \int_{-1}^{x} |G_n(x'; +1, x_3, \ldots, x_{n+1})| \, dx' \]

where

\[I_1 = \int_{-1}^{0} |G_n(x'; +1, x_3, \ldots, x_{n+1})| \, dx', \]

\[I_2 = \int_{0}^{x} |G_n(x'; +1, x_3, \ldots, x_{n+1})| \, dx'. \]

If we use (4.1),

\[I_1 = \int_{-1}^{0} |G_n(-x'; -1, -x_2, \ldots, -x_{n+1})| \, dx'. \]

If we substitute \(x = -x' \),
\[I_1 = \int_0^1 |G_n(x; -1, -x_3, \ldots, -x_{n+1})| \, dx. \]

Now if we assume that (4.3) is true if \(n \) is replaced by any number \(m \leq n \),

\[
\begin{align*}
I_1 &\leq 2 \left(\frac{4}{\pi} \right)^{n-1} \int_0^1 \sin \frac{\pi}{4} (x + 1) \, dx = 2^{1/2} \left(\frac{4}{\pi} \right)^n, \\
I_2 &= \int_0^x dx' \int_{x'}^1 \left| G_{n-1}(x''; x_3, \ldots, x_{n+1}) \right| \, dx'' \\
&\leq 2 \left(\frac{4}{\pi} \right)^{n-2} \int_0^x dx' \int_{x'}^1 \sin \frac{\pi}{4} (x'' + 1) \, dx'' \\
&= 2 \left(\frac{4}{\pi} \right)^n \sin \frac{\pi}{4} (x + 1) - 2^{1/2} \left(\frac{4}{\pi} \right)^n.
\end{align*}
\]

Therefore \(I_1 + I_2 \leq 2(4/\pi)^n \sin (\pi/4)(x+1) \).

But (4.4) is true when \(n = 0, 1 \).

Hence (4.4) is true for all \(n \) by induction.

Proof of (4.5).

\[G_{n+1}(x; -1, -1, x_3, \ldots, x_n) = \int_{-1}^{x} |G_n(x'; -1, x_3, \ldots, x_n)| \, dx' = I_3 + I_4 \]

where

\[
\begin{align*}
I_3 &= \int_{-1}^{0} |G_n(x'; -1, x_3, \ldots, x_n)| \, dx', \\
I_4 &= \int_{0}^{x} |G_n(x'; -1, x_3, \ldots, x_n)| \, dx'.
\end{align*}
\]

If we use (4.1),

\[I_3 = \int_{-1}^{0} |G_n(-x'; +1, -x_3, \ldots, -x_n)| \, dx'. \]

If we substitute \(x = -x' \),

\[I_3 = \int_{0}^{1} |G_n(x; +1, -x_3, \ldots, -x_n)| \, dx = \int_{0}^{1} \int_{x'}^{1} |G_{n-1}(x'; -x_3, \ldots, -x_n)| \, dx'. \]

Hence, if we assume (4.3) is true if \(n \) is replaced by any number \(m \leq n \),
\[I_3 \leq 2 \left(\frac{4}{\pi} \right)^{n-2} \int_0^1 dx \int_x^1 \sin \frac{\pi}{4} (x' + 1) dx' \]
\[= \left(\frac{4}{\pi} \right)^n (2 - 2^{1/2}). \]
\[I_4 \leq 2 \left(\frac{4}{\pi} \right)^{n-1} \int_0^x \sin \frac{\pi}{4} (x' + 1) dx' \]
\[= \left(\frac{4}{\pi} \right)^n \left(-2 \cos \frac{\pi}{4} (x + 1) + 2^{1/2} \right). \]

Now \(1 - \cos \left(\frac{\pi}{4} (x + 1) \right) \leq \sin \left(\frac{\pi}{4} (x + 1) \right), \quad 0 \leq x \leq 1. \) Hence \(I_3 + I_4 \leq 2 \left(\frac{4}{\pi} \right)^n \sin \left(\frac{\pi}{4} (x + 1) \right). \)

But (4.5) is true when \(n = 0, 1. \) Hence (4.5) is true for all \(n \) by induction.

Since (4.4) and (4.5) are true, we have proved (4.3). It follows by substituting \(-x\) for \(x\), that for \(-1 \leq x \leq 0\) and \(-1 \leq x_r \leq 1 \quad (1 \leq r \leq n),\)

\[\left| G_n(x; x_1, x_2, \cdots, x_n) \right| \leq 2 \left(\frac{4}{\pi} \right)^{n-1} \cos \frac{\pi}{4} (x + 1), \]

and we have the following theorem.

Theorem II. If \(z_r \) is a sequence of points on the real axis, satisfying \(-1 \leq z_r \leq 1,\) then

\[\left| G_n(z_0; z_1, z_2, \cdots, z_n) \right| \leq 2 \left(\frac{4}{\pi} \right)^{n-1}. \]

5. I shall now discuss extensions of Theorems I and II in which some of the points of the sequence \(z_r \) lie outside the unit circle, and the segment \(-1 \leq x \leq 1\) respectively.

Let \(z_r = x_r + y_r, \) where both \(x_r \) and \(y_r \) may be complex, then since \(G_n(z_0; z_1, \cdots, z_n) \) is a polynomial in each \(z_r (0 \leq r \leq n), \) we may apply Taylor's series and write

\[G_n(z_0; z_1, \cdots, z_n) = \exp \left(\sum_{r=0}^n y_r \frac{\partial}{\partial x_r} \right) G_n(x_0; x_1, \cdots, x_n). \]

Now, writing \(G_n(x_0; x_1, x_2, \cdots, x_n) = G_n, \) using (2.2) and (2.3), we note that \(\partial G_n/\partial x_r \quad (0 \leq r \leq n) \) is either one multiple integral or the product of two such integrals, in each case the total multiplicity being \(n - 1. \) Similarly \(\partial^k G_n/\partial x_r \partial x_s \cdots \partial x_t, \) where \(r, s, \cdots, t \) may all take any values between 0 and \(n \) inclusive, is either zero (for example, \(\partial^k G_n/\partial x_0 \partial x_1 \)) or the product of not more than \(k + 1 \) multiple integrals, the total multiplicity being \(n - k. \)

Now suppose that positive constants \(A, \gamma \) can be found such that

\[\left| G_n \right| < A \gamma^{n+1} \]

provided that the sequence \(\{ x_r \} \) belongs to a given set of points \(S \) which in-
1949] SUCCESSIVE DERIVATIVES OF INTEGRAL FUNCTIONS 249

eludes \(z = 0 \). Such a set exists by Theorem I.

Setting \(n = 0 \), we see that \(A' > 1 \). Hence

\[
\left| \frac{\partial^k G_n}{\partial x_r \partial x_s \cdots \partial x_t} \right| < A^{k+1} \gamma^{n+1}.
\]

Suppose also that the values of \(y_r \) are restricted in such a way that

\[
(5.3) \quad \sum_{r=1}^{n} |y_r| \leq nh
\]

for certain values of \(n \). Then (5.1) gives, for these values of \(n \),

\[
(5.4) \quad \left| G_n(z_0; z_1, \ldots, z_n) \right| < \sum_{k=0}^{\infty} \left(\frac{|y_0| + nh}{k!} \right)^k A^{k+1} \gamma^{n+1} = A \gamma^{n+1} \exp \left\{ A (|y_0| + nh) \right\}.
\]

If the sequence \(\{z_r\} \) is such that all its limit points belong to \(S \), then (5.3) is satisfied for arbitrarily small \(h \) and sufficiently large \(n \), and (5.4) gives

\[
(5.5) \quad \left| G_n(z_0; z_1, \ldots, z_n) \right| < A \gamma^{n+1}, \quad n \geq n_0(\epsilon),
\]

and hence for all \(z \) in any given finite domain, and all \(n \),

\[
(5.6) \quad \left| G_n(z; z_1, z_2, \ldots, z_n) \right| < A' (\gamma + \epsilon)^{n+1}.
\]

6. Suppose now that \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is an integral function satisfying

\[
\lim_{r \to \infty} \frac{\log M(r)}{r} = \sigma < \frac{1}{\gamma},
\]

it follows that for any \(r > \sigma \), and sufficiently large \(n \)

\[
(6.1) \quad n |a_n| < r^n.
\]

Then, if \(f(z_1) = 0 \), \(f^{(n-1)}(z_n) = 0 \), clearly

\[
f(z) = \int_{z_1}^{z} dz' \int_{z_2}^{z'} dz'' \cdots \int_{z_n}^{z^{(n-1)}} f^{(n)}(z) dz,
\]

or, following Levinson [3, §1], if we replace \(f^n(z) \) by its power series, we obtain

\[
f(z) = \sum_{k=0}^{\infty} (n + k)! \frac{a_{n+k}}{k!} \int_{z_1}^{z} dz' \int_{z_2}^{z'} dz'' \cdots \int_{z_n}^{z^{(n-1)}} z^k dz
\]

\[
= \sum_{k=0}^{\infty} (n + k)! a_{n+k} G_n(z; z_1, z_2, \ldots, z_n, 0, 0, \ldots, 0).
\]

Now since the sequence \(\{z_n\} \) is such that all its limit points belong to \(S \), then for large \(n \) and for all \(z \) in any finite domain we have by (5.6) and (6.1)
provided \(r < 1/(\gamma + \epsilon) \). But letting \(n \to \infty \) in (6.2) we have \(f(z) = 0 \).

In the particular case in which \(S \) is the unit circle, Theorem I shows that (5.2) is satisfied with \(\gamma = 1.3775 < 1/0.7259 \) for all values of \(n \), so we now have the following theorem.

Theorem III. If \(f(z) \) is an integral function satisfying

\[
\limsup_{r \to \infty} \frac{\log M(r)}{r} < 0.7259,
\]

and if \(f(z_0) = 0, f^{n-1}(z_n) = 0 \) \((n \geq 2) \), the sequence \(\{z_r\} \) having all its limit points in the unit circle, then \(f(z) = 0 \).

In the particular case in which \(S \) is the segment \(0 \leq x \leq 1 \), Theorem II shows that (5.2) is satisfied for all \(n \) with \(\gamma = 4/\pi \) and we have the following extension of Schoenberg’s theorem.

Theorem IV. If \(f(z) \) is an integral function satisfying

\[
\limsup_{r \to \infty} \frac{\log M(r)}{r} < \frac{\pi}{4},
\]

and if \(f(z_0) = 0, f^{n-1}(z_n) = 0 \) \((n \geq 2) \), the sequence \(\{z_r\} \) having all its limit points on the segment \(-1 \leq x \leq 1 \) of the real axis, then \(f(z) = 0 \).

This result has been stated by Kamenetsky [2, Theorem VIII] but I have been unable to find a published proof. It seems unlikely from the context that his method has anything in common with the one which I have used here.

7. A further theorem follows as a consequence of inequalities (5.2) and (5.6) for the case in which the limit points of the sequence of zeros lie inside the locus of points distant \(h \) from the segment \(-1 \leq x \leq 1 \) of the real axis. We shall call the domain enclosed by this curve \(H \). In this case, if we restrict the sequence \(\{x_r\} \) to the segment \(-1 \leq x \leq 1 \) (all \(r \)) and \(z_r = x_r + y_r \) \((r \geq 1) \) where \(|y_r| \leq h \) \((r \geq 1) \), (5.2) is satisfied with \(A = \pi^2/8, \gamma = 4/\pi \), by Theorem II, and (5.3) is satisfied for all \(n \) since \(|y_r| \leq h(r \geq 1) \). Hence (5.4) is satisfied for all \(n \) with these values of the constants, that is,

\[
|G_n(z_0; z_1, z_2, \cdots, z_n)| \leq \frac{\pi^2}{8} \left(\frac{4}{\pi} \right)^{n+1} \exp \left\{ \frac{\pi^2}{8} (|y_0| + nh) \right\} < A \tilde{\gamma}^{n+1},
\]

with \(\tilde{\gamma} = (4/\pi) \exp (\pi^2 h/8) \). By a second application of formulae (5.2) and (5.6), we see that, provided all the limit points of the sequence \(\{z_r\} \) lie within \(H \), (5.6) holds with \(\gamma = (4/\pi) \exp (\pi^2 h/8) \), and we have the following theorem.
Theorem V. If \(f(z) \) is an integral function satisfying
\[
\limsup_{r \to \infty} \frac{\log M(r)}{r} < \frac{\pi}{4} \exp \left(-\frac{\pi^2 h}{8}\right),
\]
and if \(f(z_1) = 0, f^{(n-1)}(z_n) = 0 \) \((n \geq 2) \), where the sequence \(\{z_r\} \) has all its limit points in \(H \), then \(f(z) = 0 \).

It is to be noted that the constant \(\left(\frac{\pi}{4}\right) \exp \left(-\frac{\pi^2 h}{8}\right) \) is "better" (that is, greater) than that obtained from the circle circumscribed to \(H \), namely,
\[
.7259/(1+h) \quad (\text{which is obtained from Theorem III by the transformation } \zeta=(1+h)z)
\]
only for small values of \(h \). It is "better" when \(h \leq 0.23 \) but not when \(h = 0.24 \).

Appendix

Upper bounds for

\[
\begin{array}{cccc}
 n & M_{n-1} & L_n & L_n/(1.3775)^n \quad (1.3775)^n \\
1 & 1 & 1 & 0.7260 \quad 1.3775 \\
2 & 2 & 1.5 & 0.7905 \quad 1.8975 \\
3 & 2.5981 & 1.9299 & 0.7384 \quad 2.6138 \\
4 & 3.6379 & 2.7915 & 0.7753 \quad 3.6005 \\
5 & 4.8414 & 3.8056 & 0.7673 \quad 4.9597 \\
6 & 6.8223 & 5.2539 & 0.7690 \quad 6.8320 \\
7 & 9.3973 & 7.2315 & 0.7685 \quad 9.4111 \\
8 & 12.9512 & 9.9635 & 0.7686 \quad 12.9638 \\
9 & 17.8413 & 13.7212 & 0.7684 \quad 17.8577 \\
10 & 24.5754 & 18.8998 & 0.7683 \quad 24.5989 \\
11 & 33.8472 & & 0.7685 \quad 33.8850 \\
\end{array}
\]

References

The University,
Aberdeen, Scotland