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Introduction

0. In a paper published in 1942, Radó has extended the scope of known

results on the semi-continuity of double integrals in parametric form to a

certain degree of finality (Radó [2])(1). Scott significantly improved one of

the key lemmas in Radó's work, which permits the various results of Radó

to be included as special cases of a more general theorem (Scott, Theorem).

The basic class of surfaces in their work is the class oß of oriented continuous

surfaces oS (see §18) which possess representations {T, B) for which the fol-

lowing conditions are satisfied.

0.1. The ordinary jacobians for the three plane projections of the repre-

sentation (T, B) exist almost everywhere and are summable in the interior

B° of B.
0.2. The lebesgue area of oS is given by the classical formula—that is, by

the lebesgue integral over B° of the square root of the sum of the squares of

the three jacobians.

Recently Cesari has established a result which implies that the class oS

includes all oriented continuous surfaces having finite lebesgue area (Cesari

[l, 2]). It is the purpose of this note to replace in the theory of Radó and

Scott the ordinary jacobians by the essential generalized jacobians (see §5).

By doing this, the need for an assumption like 0.1 is eliminated—if the

lebesgue area of an oriented continuous surface is finite then for any repre-

sentation (7", B) of that surface the three essential generalized jacobians exist

almost everywhere and are summable in B° (see §5). The basic class of surfaces

in the present work is the class of all oriented continuous surfaces having

essentially absolutely continuous representations. By the result of Cesari

just mentioned, the class of oriented continuous surfaces to which this theory

applies is identical with the class oS used by Radó and Scott. However, every

representation which satisfies conditions 0.1 and 0.2 is essentially absolutely

continuous, but the converse is not true. Thus the present theory will apply

to a wider class of representations for the oriented continuous surfaces than

any of the earlier theories, and include all the results in those theories (see

§§18, 20). The treatment in the present paper follows the pattern set in

Radó [2]. To assist the reader in following the reasoning, the notations of that

paper are generally adopted. New facts necessary to build the present theory

are set forth in the following sections.

Presented to the Society, September 10, 1948; received by the editors August 20, 1948.

(*) Numbers in brackets refer to the bibliography at the end of the paper.
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(Added in March 1949.) During the war years, L. Cesari in Italy de-

veloped independently a theory for the area of continuous surfaces which

parallels that of Radó and his students in this country. After this note was

submitted for publication, the attention of the writer was called to a paper

by Cesari in which he defines an integral of the Weierstrass type for an

admissible function over a surface given in parametric representation (Cesari

[3]). For eAC representations his integral can be shown to be equal to the

one defined in this paper. However, the methods used by Cesari differ greatly

from those developed in this note, and he does not discuss the lower semi-

continuity properties of his integral.

Preliminaries

1. There is needed the following result which is an easy consequence of

standard theorems on the lebesgue integral (McShane [3]). Let S be a meas-

urable set in euclidean space. Suppose that/„, n = 0, 1, 2, • • -, is asequence of

functions each defined almost everywhere in S, measurable, and summable in

S. For each n let EZ denote the set of points of 5 where /„ is defined and

positive, let Eñ denote the set of points of 5 where/„ is defined and negative.

Then Et and Eñ are disjoint measurable sets for every n. A necessary and

sufficient condition that there exist a sequence of measurable subsets Vn of

S such that limn^M fvnfn = fsfo is that both of the following relations hold:

lim inf   I  + /„ ^   I   /o     and    lim sup   I  _ /„ i=   I   /0.
n—»«1        J En J S n-+»        J En J S

Of course, one of these relations is always trivial. If fsfo is non-negative then

the second relation is obvious, and if the first relation holds, the measurable

sets Vn may be chosen as subsets of Et. An analogous statement may be

made when fsfo is non-positive.

2. Lemma. Given a finitely connected Jordan region dt in the u = (ul, u2)-

plane, let Tn: ¡t = £n(u), w£9î, for n=0, 1, 2, • • • be a sequence of continuous

transformations (Radó [3, IV. 1.2]) satisfying the following conditions: (i) the

distance (Radó [3, IV.1.1 ]) p(Tn, T0, 9?) of T0 and Tn on 9i converges to zero as

n tends to infinity; (ii) T0 is eBV in 9Î0 (Radó [3, IV.4.1]); (iii) Tn is eAC in

9?° for n = l, 2, ■ • ■ . Then the essential generalized jacobian Je(u, Tn) exists

almost everywhere in 9î° and is summable in 9î° for «=0, 1, 2, • • • (Radó

[3, IV.3.21, 3.25, 3.13]); suppose that

(2.1) f f  Je(u, To) ̂ 0.

Then there exists a measurable subset Vn of the set E+(Tn, 9Î0) of points in 9î*

where Je{u, Tn) exists and is positive for n = 1, 2, • • • such that
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lim   f f   Je{u, r») =   f f  J .(it, To).
n—»»  %/  J yn J J fit0

An analogous conclusion is valid if the opposite inequality holds in (2.1).

Proof. In view of the general theorem stated in §1, it is clearly sufficient to

show that

(2.2) liminf   ff Je(u,Tn)^   ff  J e(u, To).
n-»«>       J J B+(Tn,SR°) J J 9¡°

Obviously

f f Je(u, Tn)=   f f   \j.(u, Tn) + I 7,(«, Tn) | ]/2  for» = 1, 2, ■ • •.
J J £+(rn,9î0) J J si«

From Reichelderfer §§22-25 and condition (iii) it follows that

jj o [?,(«, rn) + | ?.(«, Tn) |]/2 = JJVtt. r., 9t°)       for « = 1, 2, • ■ • .

In view of conditions (i) and (ii) it follows from Reichelderfer §§16, 22, 23

and the lemma of Fatou that

lim inf   f f k+(1 Tn, R°)^  ff «+(£, T0, Ä«) à  ff  7.(«, F,

The above relations clearly yield (2.2), and the lemma is established.

3. Lemma. Ze¿ Tn: £=£n(w), «GO» /or » = 0, 1, 2, • • • , be a sequence of

bounded continuous transformations (Radó [3, I V.l.42]) satisfying the follow-

ing conditions: (i) if F is any closed set in Do then F is a subset of <Dnfor all n

sufficiently large and the distance p(T„, To, F) between Tn and To on F converges

to zero as n tends to infinity ; (ii) To is eB V in Do ; (iii) Tn is eA C in <D„ for

« = 1,2, •••.//

(3.1) |j.(«J»)äOJV-<"'
then there exists a measurable subset V„ of the set E+(Tn, <Dn)'Dafor n = \, 2,

such that

lim   f f   7.(«, Tn) =   f f   ?.(«, To.
n->«>  J J vn J J D0

An analogous conclusion is valid if the opposite inequality holds in (3.1).

Proof. If the equality sign holds in (3.1) the conclusion is obvious, since

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



278 P. V. REICHELDERFER [November

each Vn may be taken to be empty. So assume that the inequality sign holds

in (3.1). Let e be any positive number smaller than the integral in (3.1). Then

there exists a Jordan region 9t in Do such that

!  f f  7.(u,Tt)- f f'   Je(u, To) I < e.
I J J 9¡° J J D0 I

From condition (i) it follows that there exists an nt such that 3Î is a subset of

D„ for all n exceeding nc. The continuous transformations Tn:^=^n(u),

m£9Î for n = 0, n>nf, clearly satisfy all the hypotheses of the lemma in §2

(Radó [3, IV.4.1]). Hence there are measurable subsets Vnt of the sets

E+(Tn, Ti°)CE+(Tn, D„)Do for n>nc, such that

lim   f f    7.(u, Tn) =   ff   ?.(«, To).

By the diagonal process one may obtain a sequence of measurable sets Vn

as described in the lemma.

4. The above lemma offers a partial solution to the problem proposed in

Radó [3, IV.4.42]. There it is shown that if a sequence of continuous trans-

formations Tn:£=£n(u)i u^Vn, for w = 0, 1, 2, • • -satisfies the following

conditions: (i) condition 3 (i) ; (ii) the ordinary jacobian J(u, To) exists almost

everywhere in Do and is summable in Do; (iii) condition 3 (iii) ; then there is a

sequence of measurable subsets Vn in Dn such that

lim   ff   7e(u,Tn)=   f f   J(u,To).
Jl-xo    J   J Vn J   J D0

Radó remarks that it would be very desirable to replace in his result the

ordinary jacobian J(u, To) by the essential generalized jacobian 7e(u,T0).

To achieve a complete solution to the problem he proposes, condition 3 (ii)

should be replaced by

(ii*) the essential generalized jacobian Je(w, To) exists almost everywhere

in Do and is summable in Do.

This can be done. Moreover, it can be shown that the result of Radó fol-

lows as a special application of the resulting theorem. However, considerable

extensions of the present results in transformation theory seem to be necessary

to achieve this complete solution. Since these extensions are not needed to

establish the lower semi-continuity theorems in the present note, it is felt

better to defer the complete solution of the problem proposed by Radó to a

later occasion.

5. Given a simply connected Jordan region B in the îi-plane, a triple of

functions x(u) = |V(m), x2(u), x3(u)] defined and continuous on B establishes

a continuous mapping T from B into x-space (Radó [2, §1.6]). Suppose that

(T, B) is eBV (Radó [3, V.l.l, 1.15]); then each of the essential generalized
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jacobians 7ÁU< T') for i = l, 2, 3 exists almost everywhere in B" and is sum-

mable in B°. Let Xe(u, T) denote the vector with components 7ÁU< Tl),

7e(u, T2), Je(M, Tz) at every point u where all three essential generalized

jacobians exist. Then Xe(u, T) is defined almost everywhere in B° and

||.X"i(tt, T)\\ is summable in B°. Suppose that/(x, X) is an admissible integrand

(Radó [2, §§1.1, 1.2]). Then/[x(«), Xe(u)] is defined almost everywhere in

B", is measurable and summable in B° by an argument analogous to that in

Radó [2, §1.9]. Let I(T, B, f)=ffB«f[x(u), X.(u)]du.

6. Lemma. Given a continuous eAC triple (T, B) (Radó [3, V.l.15]).

Suppose that ü = t(u), uÇlB, u=cr(u), ü(ElB is a bimeasurable topological map

between B and B (Radó [3, IV.4.62]). Consider the continuous triple T:x(u)

=x[a{ü)], üEB; (T, B) is an eAC triple (Radó [3, IV.4.65]). /// is any ad-

missible integrand it follows that I(T, B,f) =I(T, B,f) if t is sense-preserving,

and I(T, B, f)=I(T, B, /*) where f*(x, X)=f(x, —X) if r is sense-reversing

(Radó [2, §1.10]).

Proof. Observe that/* is an admissible integrand (Radó [2, §1.2]). Since

the topological transformation u=a(u), w£-B, is eAC in B° (Radó [3, IV.4.52,

IV.4.55]) its essential generalized jacobian 7<¡(ut "O exists almost everywhere in

B° and is summable in B°; moreover, it is non-negative almost everywhere

in B° if t is sense-preserving; and non-positive almost everywhere in B° if r

is sense-reversing. From §5 and Radó [3, IV.4.64] it follows that Xe(û, T)

= Xe[<r(ü), T]7e(ü, er) almost everywhere in B°. There follow from Radó [3,

IV.4.58] the relations

I{T, B,f) =   f f   /[*(«), X.(u, T)]du

=   ff  /[*(*(«)}, XM*), T)] I 7.(&, a) ¡ dû

= ff /[*(«), XMe), T)-1 7e(u, a) | ]dú

ff  /[*(«). X.(û, T)]dü = I(T, B,f)
if t is sense-preserving,

ff /[*(«), - Xe(ü, T)]dü = I(T, B,n

if t is sense-reversing.

7. Let (T, B) be any continuous triple. Then (T, B) represents a continu-
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ous surface 5 (Radó [2, §1.21]) and an oriented continuous surface oS (Radó

[2, §1.23]). An easy reasoning left for the reader shows that the lebesgue

area L(S) of the surface 5 (Radó [2, §3.13]) is equal to the lebesgue area

L(oS) of the oriented surface oS (Radó [2, §3.12]). Thus results entirely

analogous to those for the lebesgue area of a continuous surface given in Radó

[3, V] are available for the lebesgue area of an oriented continuous surface.

For example, a necessary and sufficient condition that an oriented continuous

surface oS have finite lebesgue area L(oS) is that oS possess an eBV represen-

tation (Radó [3, V.l.16, 2.65, 4.8]). If oS has finite lebesgue area L(oS), and

if (T, B) is any representation for oS—which is then necessarily eBV—it is

true that

(7.1) L(oS) S;  ff   \\X.(u, T)\\du = I(T, B, \\x\\).

A necessary and sufficient condition that the sign of equality hold in (7.1) is

that the representation (T, B) be eAC.

8. According to Radó [2, §1.8] a continuous triple (T,B) is of classifiif the

first partial derivatives of each of its functions exist almost everywhere in B°

and the three ordinary jacobians associated with the triple are summable in

73°. In this note, the class of triples (T, B) which are eBV has replaced the

class of triples (2", B) which belong to the class K\ used by Radó. Observe

that a continuous triple (T, B) may be eBV without belonging to the class

K\\ indeed, every representation (T, B) for a continuous surface having

finite lebesgue area is eBV (see §7), but the ordinary jacobians for such a

representation may not exist at a single point. On the other hand, a continu-

ous triple (T, B) may belong to the class K\ of Radó without being eBV. In

fact, Youngs has shown that every continuous surface has a representation of

class K\ (see Youngs, Theorem), and thus any class K\ representation of a

continuous surface with infinite lebesgue area is not eBV.

Nevertheless, the results cited in §7 and Radó [3, V.2.64] for continuous

surfaces having eBV representations clearly imply the theorems in Radó

[2, §§3.14, 3.18], since a K\ representation which is not eBV must represent

a surface having infinite lebesgue area.

9. According to Radó [2, §1.19], a continuous triple (T, B) is of class

Kt if (T, B) is of class K\ and there is a sequence of quasi-linear triples

(Tn, Bn) whose oriented distances od[(Tn, Bn), (T, 73)] from (T, B) converge

to zero for which

lim   f f\\X(u, Tn)\\du =  f f   \\x(u,T)\\du,
n-KC   J  J Bn J  J B0

where X(u, T) is the vector whose components are the ordinary jacobians as-

sociated with (T, B). In view of the theorems in Radó [2, §§3.15, 3.19] and
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in Radó [3, V.2.64] it is clear that the class K% of Radó may be characterized

as the class of all eAC triples (T, B) for which the ordinary jacobians X(u, T)

exist almost everywhere in B°. However, a continuous triple (7", 73) may be

eAC and fail to have ordinary jacobians.

10. Lemma. Let (Tn, Bn),for # = 0, 1, 2, • • • , be a sequence of continuous

triples satisfying the following conditions : (i) the transformations T„ (Radó [3,

V.l.l]) satisfy condition 3(i) for i = l, 2, 3; (ii) (To, Bo) is eBV; (iii) (Tn, Bn)

is eAC for » = 1, 2, • ■ ■ . If a1, a2, a3 are three real constants there exist measur-

able subsets Vn of B„Bq such that

lim   I   I     a'7e(u, Tn) =   I   I  0 a'Je(u, t'0).
ti—>eo   J  J yn J   J Bn

Moreover, if

(10.1) fftaJ.(«,Tl)Z0,

then the sets Vn may be chosen as subsets of B^Bq on which a'7e(u, Tn) >0. An

analogous conclusion is valid if the opposite inequality holds in (10.1).

Proof. If the a{ are all zero for i = 1, 2, 3, the proof is trivial. If the a1 are

not all zero, there is clearly no loss of generality in assuming that a'a' = l.

Then one may choose real numbers an for i = \, 2; j = l, 2, 3 so that the

matrix

'«11      «IS      «13'

#21      #22      #23

a1      a2      a3

isjtormal and orthogonal with determinant+ 1 (McShane [l, §4]). Consider

the plane transformations

Tn:xn(u) = [aijXn(u), aijXn(v)\,    u £ B„, for n = 0, 1, 2, • • • .

From Reichelderfer §4

(10.2) 7.(u, Tn) = a'7.(u, Tn) a.e. in 73° for n = 0, 1, 2, • • • .
m _

Clearly the Tn for n — 0, 1, 2, • • • satisfy the hypotheses of the lemma in §3.

In view of (10.2), the proof of this lemma follows at once from the conclusions

in the lemma of §3.

11. In this work the lemma in the preceding section will play the role of

the generalization of the lemma of McShane by Radó (McShane [l, §4],

McShane [2, §12], Radó [l], Radó [2, §§1.28-1.30]). In its present form the

above lemma does not imply the result of Radó since Radó merely requires
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(To, Bo) to be of class Ki (see §8); however, it is quite adequate for the

purposes of the present note. When the lemma in §3 has been extended by

replacing condition 3 (ii) by condition (ii*), as discussed in §4, it is possible

to strengthen the lemma in §10 so that the generalization of the lemma of

McShane by Radó follows as a special case.

12. Let (To, Bo) be a continuous triple which is eBV. Given an admissible

integrand / (Radó [2, §1.2]), (To, Bo) is said to satisfy condition (eC) with

respect to/ if (1) there exists in x-space a closed bounded set A such that the

set (Radó [2, §1.6]) 2(r0, 730) is contained in its interior A0 and f(x, X) is

non-negative for x in A and every vector X; (2) for almost every u in B°Q such

that Xe(u, To) exists and is not zero, one has E [xo(m), Xe(u, T0), X] non-nega-

tive for every X different from zero (Radó [2, §1.3]). If (7", 73) is any eBV

triple and / is any admissible integrand it is easy to verify that there is a

positive real number H such that (2", B) satisfies condition (eC) with respect

to the admissible integrand £f||z||+/ (Radó [2, §§1.11-1.16]).

Main Results

13. Lemma. Given an admissible integrand f and a sequence of continuous

triples (Tn, Bn), n = 0, 1, 2, • • • , satisfying the following conditions: (i)

(To, Bo) is eBV; (ii) (Tn, Bn) is eAC for n = \, 2, ■ ■ • ; (iii) (To, Bo) satisfies

condition (eC) relative to f; (iv) for every closed square q in Bq there exists an

integer N(q) such that q is contained in B„ for n exceeding N(q) ; (v) on every

closed square q in L°Q, x„(u) converges to Xo(u) uniformly; (vi) the oriented dis-

tances od[(To, Bo), (Tn, Bn)] converge to zero as n tends to infinity. Then

lim inf I(Tn, Bn, f) ^ I(T0, B0, /).
n—.«

This is the analogue of the fundamental lemma in Radó [2, §2.1 J, in which

the ordinary jacobians are replaced by the essential generalized jacobians.

For the purpose of this note it would be sufficient to require that the (Tn, Bn)

for n — \, 2, • • • are quasi-linear, as is done in Radó [2], but no extra work

is required to prove the lemma under the less restrictive hypothesis (ii), and

the proof of the theorem in §19 is simplified. A proof may be constructed by

paralleling the reasoning in Radó [2, §§2.2-2.5], and using Scott, Lemma 2

instead of Radó [2, §1.5, §10],

14. Lemma. Given an admissible integrand f and a sequence of continuous

triples(T„, Bn), «=0,1, 2, • • • , satisfying the following conditions: (i) (To, B0)

is eBV; (ii) (Tn,Bn) is eAC for n = l, 2, • • • ; (iii) (T0, B0) satisfies condition

(eC) relative to f; (iv) the oriented distances od\(To, Bo), (Tn, Bn)] converge to

zero as n tends to infinity. Then

liminîI(Tn,Bn,f) ^ T(T0, B0,f).
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The type of reasoning used in Radó [2, §2.7] gives a proof at once, providing

the lemma in §13 is substituted for the lemma in Radó [2, §2.1 ], and the

results in §6 and Franklin and Weiner are used instead of Radó [2, §1.27].

15. Lemma. If (To, Bo) and (To, Bo) are two eAC triples representing the

same oriented continuous surface oSo then

I(To,Bo, \\X\\) = /(To, So, \\X\\).

This is an immediate consequence of the fact that both members of this

relation are equal to the lebesgue area L(oS) (see §7, Radó [2, §2.8]).

16. Lemma. Given an admissible integrand f and a sequence of continuous

triples (Tn, Bn), n = 0, 1, 2, • • • , satisfying the following conditions: (i)

(Tn, Bn) is eAC for n = 0, 1, 2, • • ■ ; (ii) the oriented distances od[(T0, B0),

(Tn, Bn)] converge to zero as n tends to infinity; (iii) the integrals I(Tn, Bn, \\X\\)

converge to I(T0, B0, \\x\\). Then

lim I(Tn, B„, f) - I(To,BoJ).

The reasoning in Radó [2, §2.9] yields this proof (see §§12, 14).

17. Theorem. If f is an admissible integrand, and (To, Bo), and (To, Bo)

are two eAC triples representing the same oriented continuous surface oSo, then

I(T0,Bo,f) = I(To,Bo,f).

Proof. From §15 it follows that

L(oSo) - I(To, Bo, 11*11) = /(To, Bo, \\x\\).

But there exists a sequence of oriented continuous surfaces oSn having quasi-

linear representations (Tn, Bn) for « = 1,2, • • • such that

lim od[(To, Bo), (Tn, Bn)] = 0    and    lim L(oSn) = L(oSo).
n—* » n—> »

It was noted in §7 that [Radó [3, V.2.12])

L(oSn) =  f f\\Xe(u, Tn)\\du = I(Tn, Bn, \\X\\) for n = 1, 2, • • • .

Thus the argument used in Radó [2, §2.10] leads to the desired conclusion.

18. If/ is an admissible integrand, and if oS is any oriented continuous

surface having an eAC representation (7", B), the preceding theorem shows

that the value of I(T, B, f) does not depend upon the choice of the eAC

representation (T, B) for oS—hence it may be denoted by I(oS,f). Let oeS

be the class of all oriented continuous surfaces oS which possess an eAC repre-

sentation. Then I(oS,f) is defined for o5£oe(S. In §9, it was noted that every

class Ki representation for oS according to Radó is an eAC representation,
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but the converse is false. Moreover, if (7", 73) is a representation of class Ki for

oS, then

I(oS,f) =  f f  /[*(«), Xe(u, T)]du =  f f  f[x(u), X(u, T)]du.
J J B° J  J B°

Thus the class o(S of Radó is a subclass of oe(S, and the results in Radó [2,

§§3.1-3.4] are properly contained in the present results (see §0).

19. Theorem. For a fixed admissible integrand f, the functional I(oS, /)

is lower semi-continuous at every oriented continuous surface oSo in oe<§. having

an eAC representation (To, Bo) which satisfies condition (eC) relative to f.

Proof. Let oSn be any sequence of oriented surfaces in oeE such that

od(oSo, oSn) converges to zero as n tends to infinity. Choose eAC representa-

tions (Tn, Bn) of oSn for w = l, 2, • • • . Since od(oSo, oSn)=od[(To, Bo),

(Tn, Bn)] and I(oSn,f) =I(Tn, B„, f) for » = 0, 1, 2, • • • (see §18), it is clear

that the assumptions of the lemma in §14 are fulfilled, whence it follows that

lim inf I(oSn, f) ^ I(oSo,f).
n—»»

20. In view of the remarks in §18, the results in Radó [2, §§3.5-3.8] and

Scott, Theorem, are special consequences of the theorem in §19. In case the

integrand/ is admissible and satisfies the condition/(x, X)=f(x, —X) for

all x, X, one obtains by similar arguments the following theorems which con-

tain those in Radó [2, §3.9] as special cases (see §6).

Theorem. Let e(5 be the class of all continuous surfaces S which possess an

eAC representation (T, 73). If f is an admissible integrand such that f(x, X)

=f(x> —X) for all x, X, then the value of I(T, B,f) is independent of the choice

of an eA C representation for S—hence it may be denoted by I(S, /).

Theorem. For a fixed admissible integrand f such that f(x, X) =/(x, —X)

for all x, X, the functional I(S, f) is lower semi-continuous at every continuous

surface So in eß having an eAC representation (To, Bo) which satisfies condition

(eC) relative to f.
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