ABELIAN GROUP ALGEBRAS OF FINITE ORDER

BY

SAM PERLIS AND GORDON L. WALKER

Introduction. A group G of finite order n and a field F determine in well known fashion an algebra G_F of order n over F called the group algebra of G over F. One fundamental problem\(^{(1)}\) is that of determining all groups H such that H_F is isomorphic to G_F.

It is convenient to recast this problem somewhat: If groups G and H of order n are given, find all fields F such that G_F is isomorphic to H_F (notationally: $G_F \cong H_F$). We present a complete solution of this problem for the case in which G (and thus necessarily H) is abelian and F has characteristic infinity or a prime not dividing n. The result, briefly, is that F shall contain a certain subfield which is determined by the invariants of G and H and the characteristic of F.

1. Multiplicities. If G is abelian of order n and F is a field whose characteristic does not divide n, the group algebra G_F has the structure

$$G_F = \sum_{d|n} a_d F(\zeta_d)$$

where ζ_d is a primitive dth root of unity, a_d is a non-negative integer, and $a_d F(\zeta_d)$ denotes the direct sum of a_d isomorphic copies of $F(\zeta_d)$. In fact, each irreducible representation S of G_F maps G_F onto a field $F_S \cong F$ and maps the elements of G on nth roots of unity. The image of G is a subgroup of the group of all nth roots of unity, thus is a cyclic group of some order dividing n. It follows that $F_S = F(\zeta_d)$ where ζ_d is a primitive dth root of unity.

Formula (1) expresses the fact that a complete set of irreducible representations of G_F over F include precisely a_d which map G onto a cyclic group of order d. Now if K is the root field over F of $x^n - 1 = 0$ we have

$$G_K = \sum_{d|n} n_d K_d$$

where every $K_d = K(\zeta_d)$ is isomorphic to K, $\sum n_d = n$, and each n_d is the number of irreducible representations T of G_K mapping G on a cyclic group of order d.

Lemma 1. The integer n_d in (2) is the number of elements of order d in G.

There is a one-to-one correspondence between the elements g of G and the

\(^{(1)}\) Proposed by R. M. Thrall at the Michigan Algebra Conference in the summer of 1947.
representations $T = T_g$. The formulae\(^{(2)}\) for this correspondence make it evident that g has order d if and only if T_g maps a basis of G onto a set of elements, the l.c.m. of whose orders is d. Then some element of G is mapped on an element of order d, all others on elements of order not greater than d. The map of G is thus a cyclic group of order d, and this proves the lemma.

Each irreducible representation S of \mathbb{G}_F over F may be extended to a representation of \mathbb{G}_K over K, the extension not altering the map of G. If S maps \mathbb{G}_F onto $F(\xi_d)$ where the degree of $F(\xi_d)/F$ is

\[(3) \deg F(\xi_d)/F = v_d,
\]

then S maps \mathbb{G}_K on the direct sum\(^{(4)}\)

\[(4) F(\xi_d)_K = K^{(1)} \oplus \cdots \oplus K^{(v_d)} = v_d K,
\]

thus giving rise to v_d irreducible representations T of \mathbb{G}_K over K.

Lemma 2. If S maps G onto a cyclic group of order d, so does each representation T defined above.

Each element g in G is mapped by S on $g^S = \sum g_i, g_i$ in $K^{(g)}$, and the corresponding irreducible representations over K are T_i: $g^{T_i} = g_i$. It may be seen\(^{(4)}\) that the g_i are obtainable from one another by automorphisms of $F(\xi_d)_K$ leaving the elements of K invariant. Hence all the g_i have the same minimum function over K, and all of them are primitive dth roots of unity if g^S is one. Lemma 2 follows immediately, and it follows that the T_i into which the representations S split are the only irreducible representations of \mathbb{G}_K mapping G on a cyclic group of order d. The a_d choices of S give rise to $a_d v_d$ representations T, whence $n_d = a_d v_d$.

Theorem 1. The multiplicity a_d in (1) is given\(^{(6)}\) by $a_d = n_d/v_d$ where n_d is the number of elements of order d in G and v_d is $\deg F(\xi_d)/F$.

Now let G and H be abelian of common order $n = p_1^{k_1} \cdots p_k^{k_k}$ for distinct primes p_i, so there are unique expressions $G = G_1 \times \cdots \times G_k$ and $H = H_1 \times \cdots \times H_k$ for G and H as direct products of groups G_i and H_i of order $n_i = p_i^{k_i}$. Then:

Corollary 1. $G \cong H$ if and only if $G_i \cong H_i$ for $i = 1, \ldots, k$.

By hypothesis and Theorem 1

\[^{(h)}\] Ibid.

\[^{(i)}\] The authors are indebted to the referees for the simple approach to Theorem 1 which has been presented here.
\[G_F = \sum_{d \mid n} m_d/vdF(\zeta_d) \cong H_F, \]

\[G_{iF} = \sum_{d \mid n_i} g_{id}/vdF(\zeta_d), \quad H_{iF} = \sum_{d \mid n_i} h_{id}/vdF(\zeta_d) \]

where the number of elements of order \(d \) in \(G_i \) is \(g_{id} \), in \(H_i \) is \(h_{id} \), and in \(G \) or \(H \) is \(m_d \). But if \(d \mid n_i \), the elements of \(G \) having order \(d \) lie in \(G_i \), so \(m_d = g_{id} \) and likewise \(m_d = h_{id} \), whence \(G_{iF} \cong H_{iF} \). The converse is trivial.

In the remaining sections only the prime-power case is considered.

2. Cyclotomic fields. When \(n = p^a \) for a prime \(p \) the notation in (1) will be changed to

\[G_F = \sum_{i=0}^{a} a_i F(\zeta_i) \]

where \(\zeta_i \) and \(a_i \) are new symbols for \(\zeta_d \) and \(a_d \), \(d = p^i \). This section explores conditions under which \(F(\zeta_i) \cong F(\zeta_j) \).

Lemma 3. Let \(i \) and \(j \) be positive integers such that \(i < j \). Then \(F(\zeta_i) = F(\zeta_j) \) if and only if \(F \) has a subfield \(F_0 \subseteq P(\zeta_i) \) such that \(F_0(\zeta_i) = F_0(\zeta_i) \).

Proof. If \(F_0(\zeta_i) = F_0(\zeta_j) \), the field \(F(\zeta_i) \) must contain \(\zeta_j \). Conversely, suppose \(F(\zeta_i) = F(\zeta_j) \). The minimum function \(f(x) \) of \(\zeta_j \) over \(F \) has degree \(s \) equal to that of \(\zeta_i \), and is a factor of the minimum function \(m(x) \) of \(\zeta_j \) over \(P \). The coefficients of \(f(x) \) then must lie in the root field \(P(\zeta_j) \) of \(m(x) \) over \(P \), and hence generate a subfield \(F_0 \) of \(P(\zeta_j) \) such that \(F_0(\zeta_j) \subseteq F \). Then \(F_0(\zeta_j) \cong F_0(\zeta_i) \), and

\[\deg F_0(\zeta_j)/F_0 = s \geq \deg F_0(\zeta_i)/F_0 = r \geq \deg F(\zeta_i)/F = s, \]

whence \(r = s \), \(F_0(\zeta_i) = F_0(\zeta_j) \).

It is necessary now to make a brief detour because of some peculiarities arising if \(P \) is finite. Suppose that

\[P \subseteq P(\zeta_1) = \cdots = P(\zeta_e) < P(\zeta_{e+1}) \quad (e \geq 1) \]

if \(p \) is odd, and

\[P \subseteq P(\zeta_2) = \cdots = P(\zeta_e) < P(\zeta_{e+1}) \quad (e \geq 2) \]

if \(p = 2 \). These equalities never occur if \(P = \mathbb{R} \) but do occur if \(P \) is a finite prime field whose characteristic is appropriately related to \(p \) (see Lemma 5).

Definition. Let \(p \) be a prime and let \(P \) be a prime field of characteristic not equal to \(p \). Then the integer \(e \) defined by (6) and (7) is called the cyclotomic number of \(P \) relative to \(p \) (or cyclotomic \(p \)-number of \(P \)).

Lemma 4. Let \(P \) be a finite prime field of characteristic \(\pi \), \(n \) be an integer not
 divisible by \(\pi\), and \(P(\zeta)\) be the root field over \(P\) of \(x^n - 1\). Then \(\deg P(\zeta)/P = e\) where \(e\) is defined as the exponent to which \(\pi\) belongs modulo \(n\).

Let \(P_f\) be a field of degree \(f\) over \(P\) so its nonzero quantities are roots of \(x^n - 1 = 0\), \(n = \pi^f - 1\). Then \(P_f\) contains the \(n\)th roots of unity if \(n\) divides \(\nu\). Conversely, if \(P_f\) contains a primitive \(n\)th root of unity, \(\zeta\), the equation \(\nu = gn + r\) \((0 \leq r < n)\) leads to \(\zeta^n - 1 = \zeta^r\) so \(r = 0\), and \(n\) divides \(\nu\). The smallest value of \(\nu = \pi^f - 1\) obeying this condition is given by \(f = e\). On the other hand the smallest value surely belongs to \(P_f = P(\zeta)\).

Now let \(n = p^i\), where \(p\) is a prime not equal to \(\pi\), and denote the corresponding integer \(e\) of Lemma 4 by \(e_i\). Then the cyclotomic \(p\)-number of \(P\) is the integer \(e\) determined by the conditions \(e_1 = e_2 = \cdots = e_e < e_{e+1} (p\text{ odd})\), \(e_2 = e_3 = \cdots = e_e < e_{e+1} (p = 2)\). Hence:

Lemma 5. The cyclotomic \(p\)-number of \(P\) is the maximum integer \(e\) such that \(p^e\) divides \(n^e - 1\) where \(e\) is the exponent to which \(\pi\) belongs modulo \(p\) if \(p\) is odd, or modulo 4 if \(p = 2\).

The fact that \(P(\zeta_i) < P(\zeta_{i+1})\) for every \(i \geq e\) is a consequence of the following result.

Lemma 6. The extension \(P(\zeta_{i+1})/P(\zeta_i)\) has degree \(d_i = p^i (i = 1, 2, \cdots)\).

Writing \(e_i = e\) we have \(d_i = e_{i+1}/e\) and know(\#) that \(d_i = p^i, j \leq i, e_{i+1} = p^e\).

By Lemma 5, \(n^e = a + p^e\) where \(a\) is not divisible by \(p\). A trivial induction shows that
\[
\pi^{p^i} = 1 + ap^{e+i},
\]
for \(i = 0, 1, 2, \cdots\). This proves that \(e_{e+i} = p^e\).

Lemma 7. If \(p\) is an odd prime and \(P\) is any prime field of characteristic not \(p\), \(P(\zeta_q)\) has the structure
\[
P(\zeta_q) = P(\zeta_1) \times L_q, \quad \deg L_q/P = \text{power of } p,
\]
where \(L_q\) is unique. Moreover, \(L_q = P\) if \(q\) does not exceed the cyclotomic \(p\)-number of \(P\).

The proof of this result is similar to the known(\?) proof for the case \(P = R\).

Lemma 8. Let \(p\) be odd and \(q > 1\). Then the following conditions are equivalent:
\begin{itemize}
 \item[(i)] \(F(\zeta_q) = F(\zeta_i), 1 \leq i < q\).
 \item[(ii)] \(F(\zeta_q) = F(\zeta_{q-1}) = \cdots = F(\zeta_1)\).
 \item[(iii)] \(F\) contains the field \(L_q\) defined by Lemma 7.
\end{itemize}

(\#) A. A. Albert, Modern higher algebra, Chicago, 1937, p. 188, Theorem 21. The desired result is obtained by repeated application of this reference theorem.

The condition (iii) implies that \(F(\xi_1) \) contains \(L_\varphi(\xi_1) = P(\xi_\varphi) \), \(F(\xi_1) = F(\xi_\varphi) \), so (ii) follows. That (ii) implies (i) is obvious. Now we assume (i) and use Lemma 3 to reduce considerations to the case \(F \leq P(\xi_\varphi) = F(\xi_\varphi) \). If \(q \leq e \) where \(e \) is the cyclotomic \(p \)-number of \(P \), \(L_q = P \leq F \) so (iii) is valid. Now let \(q \) be greater than \(e \).

The field \(F(\xi_i) \) is the composite \(F \cup P(\xi_i) \). Denoting the intersection \(F \cap P(\xi_i) \) by \(F_n \), we have

\[
\deg F/F_n = \deg F(\xi_i)/F(\xi_\varphi) = \deg P(\xi_\varphi)/P(\xi_i).
\]

Also, \(\deg P(\xi_\varphi)/P = p^\mu \), \(\deg F/P = p^\nu \) for suitable integers \(\epsilon, a, u \) where \((P(\xi_i))/P \) and \(v \) a divisor of \(u \). To complete preparations for substituting in (9) note that \(P(\xi_\varphi)/P \) is cyclic, hence possesses a unique subfield of any given degree dividing \(p^\epsilon \). Thus:

\[
\deg F_i/P = \gcd[p^\epsilon, p^\nu] = p^\epsilon
\]

where \(\mu = \min a, \epsilon \). From (9), \(p^\epsilon = p^\nu \) where \(c = \epsilon_\varphi - \epsilon = a - \mu \). Since \(q > e \), we have \(\epsilon_\varphi - \epsilon > 0 \), \(\mu < a \), \(\mu = \epsilon_\varphi \), so \(a = \epsilon_\varphi \), \(\deg F/P = p^\nu \). Every such subfield \(F \) of \(P(\xi_\varphi) \) must contain the subfield \(L_q \) of degree \(\geq e \).

For the case \(p = 2 \) similar results are obtainable. The extension \(P(\xi_\varphi)/P \) is cyclic of degree a power of 2 if \(P \) is finite, and for this case we define

\[
L_q = P \quad \text{if} \quad q \leq e, \quad L_q = P(\xi_\varphi) \quad \text{if} \quad q > e,
\]

where \(e \) is the cyclotomic number of \(P \) relative to \(p = 2 \). For \(P = R \) we have

\[
P(\xi_\varphi) = P(\xi_2) \times L_q \quad \text{where} \quad L_q \quad \text{is arbitrarily one of the fields}
\]

and \(\deg L_q/P = 2^q - 2 \). We then state without proof:

Lemma 9. Let \(p = 2 \) and \(q > 2 \). Then the following conditions are equivalent:

(i) \(F(\xi_\varphi) = F(\xi_i) \), \(2 \leq i \leq q \).

(ii) \(F(\xi_\varphi) = F(\xi_{i-1}) = \cdots = F(\xi_2) \).

(iii) \(F \) contains one of the fields \(L_q \) above.

3. Determination of the fields. Let \(G \) and \(H \) be abelian groups of common prime-power order \(p^\alpha \) and let \(F \) be any field of characteristic not \(p \). In this section all fields \(F \) are determined such that \(G_F \cong H_F \).

As in (5) we have

\[
G_F = \sum_{i=0}^a a_i F(\xi_i), \quad H_F = \sum_{i=0}^a b_i F(\xi_i),
\]

so there is a unique integer \(q = q(G, H) \) defined as the maximum integer \(i \) such that \(a_i = b_i \). From Theorem 1 this integer is the maximum \(i \) such that \(m_i \neq n_i \), where \(m_i \) and \(n_i \) are the numbers of elements of order \(p^i \) in \(G \) and \(H \), respectively. Thus \(q \) is independent of \(F \). Since \(m_0 = n_0 = 1 \), \(q \) is never less than 2, but it may happen that \(q \) does not exist, that is, every \(m_i = n_i \). In
this case we define \(q = 0 \).

Theorem 2. The group algebras \(GF \) and \(HF \) are isomorphic if and only if \((\alpha)\) holds when \(p \) is odd, and \((\beta)\) or \((\gamma)\) holds when \(p = 2 \):

\((\alpha)\) \(F \leq L_q \) defined by Lemma 7.

\((\beta)\) \(G \) and \(H \) have the same number of invariants and \(F \) contains one of the fields \(L_q \) defined by Lemma 9.

\((\gamma)\) \(G \) and \(H \) have unequal numbers, \(\gamma \) and \(\eta \), of invariants and \(F \) contains \(P(\zeta_q) \) where \(P \) is the prime subfield of \(F \).

If \(q = 0 \) the theorem is trivial, so we assume \(q > 0 \), hence \(q \geq 2 \). Note that \(GF \cong HF \) if and only if \(A \cong B \) where

\[
A = \sum_{i=0}^{q} a_i F(\zeta_i), \quad B = \sum_{i=0}^{q} b_i F(\zeta_i).
\]

Suppose \((\alpha)\) holds. Then (Lemma 8) both \(A \) and \(B \) becomes \(\sum a_i F(\zeta_i) \) for a suitable integer \(m \), so \(A \cong B \). If \(p = 2 \), \(F(\zeta_i) = F, a_1 = 2^{q-1} \) so

\[
A = 2^q F \oplus \sum_{i=2}^{q} a_i F(\zeta_i), \quad B = 2^q F \oplus \sum_{i=2}^{q} b_i F(\zeta_i)
\]

whence \((\beta)\) implies that \(A = 2^q F \oplus m F(\zeta_1) \cong B \). If \((\gamma)\) holds, \(A \) and \(B \) are diagonal over \(F \) and of the same order, hence isomorphic. Conversely, suppose \(A \cong B \) and first let \(p \) be odd. The assumption that \(F(\zeta_a) \) is not isomorphic to \(F(\zeta_b) \) for \(i < q \) implies that \(A \) has precisely \(a_q \) components \(F(\zeta_a) \) and \(B \) has precisely \(b_q \) such components. But then the fact that \(a_q \neq b_q \) conflicts with the isomorphism of \(A \) and \(B \). Hence \(F(\zeta_a) = F(\zeta_b) \) for \(i < q \) so \(F \cong L_q \). The proofs for \(p = 2 \) are obtained in similar fashion.

The case in which \(F \) is a prime field is interesting.

Theorem 3. Let \(G \) and \(H \) be abelian groups of order \(p^\alpha \). If \(R \) is the rational number field, \(G_R \cong H_R \) if and only if \(G \cong H \). If \(P \) is a finite prime field of characteristic \(\pi \neq p \), \(G_P \cong H_P \) if and only if \(q \leq e \) (where \(e \) is the cyclotomic \(p \)-number of \(P \)) unless \(p = 2 \) and \(G \) and \(H \) have different numbers of invariants. In the latter case \(G_P \cong H_P \) if and only if \(q \leq e \) and \(\pi = 1 \) (mod 4).

For \(F = R \) the decompositions (12) are unique. Hence the condition \(G_R \cong H_R \) implies that \(q = 0 \), and for each integer \(k = \phi^h \) dividing \(p^\alpha \), \(G \) and \(H \) have the same number of elements of order \(k \). This number is \(N_k(G) \phi(k) \) where \(\phi \) denotes the Euler \(\phi \)-function and \(N_k(G) = N_k \) the number of cyclic subgroups of order \(k \) in \(G \). The numbers \(N_k \) have been determined\(^8\) by formulae which show that the group invariants are determined when the \(N_k \)

are specified. Thus $G \cong H$. The remaining parts of the theorem follow from Theorem 2 and our lemmas.

To compute the "q-number" directly from the invariants of G and H, denote the latter by p^i ($i = 1, \cdots, \gamma$) and p'^j ($j = 1, \cdots, \eta$), respectively, numbered in descending order of magnitude.

Theorem 4. Define λ as the minimum integer i such that $e_i \neq f_i$. Then $q = \max [e_\lambda, f_\lambda]$.

For proof, note that $G = K \times \overline{G}$, $H = K \times \overline{H}$ where K has invariants p^i, $i = 1, \cdots, \lambda - 1$, and those of \overline{G} and \overline{H} are evident. Let the common order of \overline{G} and \overline{H} be \bar{n} and let the numbers of elements of order p^i in G, H, and K, respectively, be m_i, n_i, and k_i. Then $i > e_\lambda$ implies $m_i = \bar{n}k_i$ and $i > f_\lambda$ implies $n_i = \bar{n}k_i$. For definiteness take $e_\lambda > f_\lambda$, so $i > e_\lambda$ implies $m_i = n_i$, $q \leq e_\lambda$. For $i = e_\lambda > f_\lambda$, however, $n_i = \bar{n}k_i$, $m_i > n_i$. This proves that $q = e_\lambda$.

Purdue University,
Lafayette, Ind.