Density ratios and $(\phi ,1)$ rectifiability in $n$-space
Author:
Edward F. Moore
Journal:
Trans. Amer. Math. Soc. 69 (1950), 324-334
MSC:
Primary 27.2X
DOI:
https://doi.org/10.1090/S0002-9947-1950-0037894-0
MathSciNet review:
0037894
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
C. CarathĂ©odory, Ăber das lineare Mass von Punktmengenâeine Verallgemeinerung des LĂ€ngenbegriffs, Nachr. Ges. Wiss. Göttingen (1914) pp. 404-426.
- Samuel Eilenberg and O. G. Harrold Jr., Continua of finite linear measure. I, Amer. J. Math. 65 (1943), 137â146. MR 7643, DOI https://doi.org/10.2307/2371777
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114â192. MR 22594, DOI https://doi.org/10.1090/S0002-9947-1947-0022594-3
- A. P. Morse and John F. Randolph, The $\phi $ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236â305. MR 9975, DOI https://doi.org/10.1090/S0002-9947-1944-0009975-6
Retrieve articles in Transactions of the American Mathematical Society with MSC: 27.2X
Retrieve articles in all journals with MSC: 27.2X
Additional Information
Article copyright:
© Copyright 1950
American Mathematical Society