Some theorems on groups with applications to ring theory
HTML articles powered by AMS MathViewer
- by Bailey Brown and Neal H. McCoy
- Trans. Amer. Math. Soc. 69 (1950), 302-311
- DOI: https://doi.org/10.1090/S0002-9947-1950-0038952-7
- PDF | Request permission
References
- Richard F. Arens and Irving Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457–481. MR 25453, DOI 10.1090/S0002-9947-1948-0025453-6
- Bailey Brown, An extension of the Jacobson radical, Proc. Amer. Math. Soc. 2 (1951), 114–117. MR 40286, DOI 10.1090/S0002-9939-1951-0040286-8
- Bailey Brown and Neal H. McCoy, Radicals and subdirect sums, Amer. J. Math. 69 (1947), 46–58. MR 19594, DOI 10.2307/2371653
- Bailey Brown and Neal H. McCoy, The radical of a ring, Duke Math. J. 15 (1948), 495–499. MR 25448
- Bailey Brown and Neal H. McCoy, The maximal regular ideal of a ring, Proc. Amer. Math. Soc. 1 (1950), 165–171. MR 34757, DOI 10.1090/S0002-9939-1950-0034757-7
- R. A. Good, On the theory of clusters, Trans. Amer. Math. Soc. 63 (1948), 482–513. MR 24895, DOI 10.1090/S0002-9947-1948-0024895-2
- N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300–320. MR 12271, DOI 10.2307/2371731
- Ruth Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1935), no. 1, 416–430 (German). MR 1512948, DOI 10.1007/BF01448037
- Malcolm F. Smiley, Alternative regular rings without nilpotent elements, Bull. Amer. Math. Soc. 53 (1947), 775–778. MR 22211, DOI 10.1090/S0002-9904-1947-08875-3
- Malcolm F. Smiley, Application of a radical of Brown and McCoy to non-associative rings, Amer. J. Math. 72 (1950), 93–100. MR 32591, DOI 10.2307/2372136 M. Zorn, Theorie der Alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ. vol. 8 (1930) pp. 123-147.
- Max Zorn, Alternative rings and related questions I: existence of the radical, Ann. of Math. (2) 42 (1941), 676–686. MR 5098, DOI 10.2307/1969256
Bibliographic Information
- © Copyright 1950 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 69 (1950), 302-311
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9947-1950-0038952-7
- MathSciNet review: 0038952