The classes $L_ p$ and conformal mapping
HTML articles powered by AMS MathViewer
- by P. R. Garabedian
- Trans. Amer. Math. Soc. 69 (1950), 392-415
- DOI: https://doi.org/10.1090/S0002-9947-1950-0039072-8
- PDF | Request permission
References
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108 S. Bergman, Partial differential equations, Brown University, Providence, 1941.
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- P. R. Garabedian, Schwarz’s lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1–35. MR 32747, DOI 10.1090/S0002-9947-1949-0032747-8
- P. R. Garabedian, Distortion of length in conformal mapping, Duke Math. J. 16 (1949), 439–459. MR 30605, DOI 10.1215/S0012-7094-49-01643-9 —, A new proof of the Riemann mapping theorem, Proceedings of the Symposium on Conformal Mapping, Institute for Numerical Analysis, Los Angeles, 1949.
- P. R. Garabedian and M. Schiffer, On existence theorems of potential theory and conformal mapping, Ann. of Math. (2) 52 (1950), 164–187. MR 36316, DOI 10.2307/1969517
- Menahem Schiffer, The span of multiply connected domains, Duke Math. J. 10 (1943), 209–216. MR 8259
- Menahem Schiffer, The kernel function of an orthonormal system, Duke Math. J. 13 (1946), 529–540. MR 19115 —, On various types of orthogonalization, to appear shortly.
Bibliographic Information
- © Copyright 1950 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 69 (1950), 392-415
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9947-1950-0039072-8
- MathSciNet review: 0039072