The behavior at infinity of certain convolution transforms
HTML articles powered by AMS MathViewer
- by I. I. Hirschman
- Trans. Amer. Math. Soc. 70 (1951), 1-14
- DOI: https://doi.org/10.1090/S0002-9947-1951-0041272-9
- PDF | Request permission
References
- I. I. Hirschman Jr., A new representation and inversion theory for the Laplace integral, Duke Math. J. 15 (1948), 473–494. MR 25616
- I. I. Hirschman Jr. and D. V. Widder, An inversion and representation theory for convolution transforms with totally positive kernels, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 152–156. MR 25617, DOI 10.1073/pnas.34.4.152
- I. I. Hirschman Jr. and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. 66 (1949), 135–201. MR 32817, DOI 10.1090/S0002-9947-1949-0032817-4
- I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Polya-Schur type, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 11–17. MR 18706, DOI 10.1073/pnas.33.1.11 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford University Press, 1937.
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 70 (1951), 1-14
- MSC: Primary 42.4X
- DOI: https://doi.org/10.1090/S0002-9947-1951-0041272-9
- MathSciNet review: 0041272