Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On some applications of the universal enveloping algebra of a semisimple Lie algebra
HTML articles powered by AMS MathViewer

by Harish-Chandra PDF
Trans. Amer. Math. Soc. 70 (1951), 28-96 Request permission
References
  • Garrett Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. (2) 38 (1937), no. 2, 526–532. MR 1503351, DOI 10.2307/1968569
  • E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41 (1913), 53–96 (French). MR 1504700
  • Claude Chevalley, Sur la classification des algèbres de Lie simples et de leurs représentations, C. R. Acad. Sci. Paris 227 (1948), 1136–1138 (French). MR 27270
  • Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785–793. MR 6544, DOI 10.2307/2371622
  • Claude Chevalley, Algebraic Lie algebras, Ann. of Math. (2) 48 (1947), 91–100. MR 19603, DOI 10.2307/1969217
  • —, Theory of Lie groups, Princeton University Press, 1946.
  • I. M. Gel′fand and M. A. Naĭmark, On the connection between the representations of a complex semi-simple Lie group and those of its maximal compact subgroups, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 225–228 (Russian). MR 0027279
  • Lars Gårding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 331–332. MR 21943, DOI 10.1073/pnas.33.11.331
  • Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
  • Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
  • F. I. Mautner, Ann. of Math. vol. 52 (1951) pp. 528-556. H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395. —, The classical groups, Princeton University Press, 1939. E. Witt, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 09.0X
  • Retrieve articles in all journals with MSC: 09.0X
Additional Information
  • © Copyright 1951 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 70 (1951), 28-96
  • MSC: Primary 09.0X
  • DOI: https://doi.org/10.1090/S0002-9947-1951-0044515-0
  • MathSciNet review: 0044515