On some applications of the universal enveloping algebra of a semisimple Lie algebra
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 70 (1951), 28-96
- DOI: https://doi.org/10.1090/S0002-9947-1951-0044515-0
- PDF | Request permission
References
- Garrett Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. (2) 38 (1937), no. 2, 526–532. MR 1503351, DOI 10.2307/1968569
- E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41 (1913), 53–96 (French). MR 1504700
- Claude Chevalley, Sur la classification des algèbres de Lie simples et de leurs représentations, C. R. Acad. Sci. Paris 227 (1948), 1136–1138 (French). MR 27270
- Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785–793. MR 6544, DOI 10.2307/2371622
- Claude Chevalley, Algebraic Lie algebras, Ann. of Math. (2) 48 (1947), 91–100. MR 19603, DOI 10.2307/1969217 —, Theory of Lie groups, Princeton University Press, 1946.
- I. M. Gel′fand and M. A. Naĭmark, On the connection between the representations of a complex semi-simple Lie group and those of its maximal compact subgroups, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 225–228 (Russian). MR 0027279
- Lars Gårding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 331–332. MR 21943, DOI 10.1073/pnas.33.11.331
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548 F. I. Mautner, Ann. of Math. vol. 52 (1951) pp. 528-556. H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395. —, The classical groups, Princeton University Press, 1939. E. Witt, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160.
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 70 (1951), 28-96
- MSC: Primary 09.0X
- DOI: https://doi.org/10.1090/S0002-9947-1951-0044515-0
- MathSciNet review: 0044515