AUTOMORPHISMS OF THE UNIMODULAR GROUP

BY

L. K. HUA AND I. REINER

Notation. Let \(\mathcal{M}_n \) denote the group of \(n \times n \) integral matrices of determinant \(\pm 1 \) (the unimodular group). By \(\mathcal{M}_n^+ \) we denote that subset of \(\mathcal{M}_n \) where the determinant is \(+1 \); \(\mathcal{M}_n^- \) is correspondingly defined. Let \(I^{(n)} \) (or briefly \(I \)) be the identity matrix in \(\mathcal{M}_n \), and let \(X' \) represent the transpose of \(X \). The direct sum of the matrices \(A \) and \(B \) will be represented by \(A + B \);

\[
A = B
\]

will mean that \(A \) is similar to \(B \). In this paper, we shall find explicitly the generators of the group \(\mathcal{A}_n \) of all automorphisms of \(\mathcal{M}_n \).

1. The commutator subgroup of \(\mathcal{M}_n \). The following result is useful, and is of independent interest.

Theorem 1. Let \(\mathcal{R}_n \) be the commutator subgroup of \(\mathcal{M}_n \). Then trivially \(\mathcal{R}_n \subset \mathcal{M}_n^+ \). For \(n = 2 \), \(\mathcal{R}_n \) is of index 2 in \(\mathcal{M}_2^+ \), while for \(n > 2 \), \(\mathcal{R}_n = \mathcal{M}_n^+ \).

Proof. Consider first the case where \(n = 2 \). Define

\[
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]

It is well known that \(S \) and \(T \) generate \(\mathcal{M}_2^+ \). An element \(X \) of \(\mathcal{M}_2^+ \) is called even if, when \(X \) is expressed as a product of powers of \(S \) and \(T \), the sum of the exponents is even; otherwise, \(X \) is called odd. Since all relations satisfied by \(S \) and \(T \) are consequences of

\[
S^2 = -I, \quad (ST)^3 = I,
\]

it follows that the parity of \(X \in \mathcal{M}_2^+ \) depends only on \(X \), and not on the manner in which \(X \) is expressed as a product of powers of \(S \) and \(T \), the sum of the exponents is even; otherwise, \(X \) is called odd. Since all relations satisfied by \(S \) and \(T \) are consequences of

\[
S^2 = -I, \quad (ST)^3 = I,
\]

it follows that the parity of \(X \in \mathcal{M}_2^+ \) depends only on \(X \), and not on the manner in which \(X \) is expressed as a product of powers of \(S \) and \(T \). Let \(\mathcal{C} \) be the subgroup of \(\mathcal{M}_2^+ \) consisting of all even elements; then clearly \(\mathcal{C} \) is of index 2 in \(\mathcal{M}_2^+ \). It suffices to prove that \(\mathcal{C} = \mathcal{R}_2 \).

We prove first that \(\mathcal{R}_2 \subset \mathcal{C} \). Since the commutator subgroup of a group is always generated by squares, it suffices to show that \(A \in \mathcal{M}_2 \) implies \(A^2 \in \mathcal{C} \). For \(A \in \mathcal{M}_2^+ \), this is clear. If \(A \in \mathcal{M}_2^- \), set \(A = XJ = JY \), where

\[
J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]

Presented to the Society, December 29, 1950; received by the editors January 8, 1951.
and X and $Y \in \mathbb{M}_n^+$. Then $A^2 = XY = XJ^{-1}XJ$. Hence we need only prove that if $X \in \mathbb{M}_n^+$, X and $J^{-1}XJ$ are of the same parity. This is easily verified for $X = S$ or T; since S and T generate \mathbb{M}_n^+, and $J^{-1}X_1X_2J = J^{-1}X_1J \cdot J^{-1}X_2J$, the result follows.

On the other hand we can show that $\mathbb{E} \subset \mathbb{R}_2$. For, \mathbb{E} is generated by T^2 and ST, since $TS = (ST \cdot T^{-2})^2$. However, $T^2 = TJT^{-1}J^{-1} \in \mathbb{R}_2$, and therefore also $(T')^{-2} \in \mathbb{R}_2$. Furthermore, $ST = TST^{-1}(T')^{-2}T^2 \in \mathbb{R}_2$. This completes the proof for $n = 2$.

Suppose now that $n > 2$, and define

$$R = \begin{pmatrix} 0 & \cdots & 0 & (-1)^{n-1} \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{M}_n^+, \quad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + I^{(n-2)}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + I^{(n-2)}.$$

(The symbols S and T defined here are the analogues in \mathbb{M}_n^+ of those defined by (1). It will be clear from the context which are meant.) For $n > 2$ we have

$$T' = [R^{-1}(TR)^{-1}R(TR)^{n-2}](TR)^{-1}[R(RT)^{-1}(R^{-1}(TR)^{-1}R^2)](TR) \in \mathbb{R}_n.$$

Further $S = TST^{-1}(T')^{-2}T \in \mathbb{R}_n$. Finally, for odd n there exists a permutation matrix P such that $R^2 = P^{-1}RP$, whence $R = R^{-1}P^{-1}RP \in \mathbb{R}_n$. For even n, R represents the monomial transformation

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_2 & x_3 & \cdots & x_n & -x_1 \end{pmatrix},$$

which is a product of

$$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_{n-1} & x_n \\ x_2 & -x_1 & x_3 & \cdots & x_n \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ -x_3 & x_2 & x_1 & \cdots & x_n \end{pmatrix},$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ x_4 & x_2 & x_3 & \cdots & x_n \end{pmatrix}, \cdots , \begin{pmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_n & x_2 & \cdots & x_{n-1} & -x_1 \end{pmatrix},$$

each factor of which is similar to S (and hence is in \mathbb{R}_n). Since T and R generate \mathbb{M}_n^+, the theorem is proved.

Corollary 1. In any automorphism of \mathbb{M}_n, always $\mathbb{M}_n^+ \to \mathbb{M}_n^+$.

Proof. For $n > 2$ this is an immediate corollary, since the commutator subgroup goes into itself in any automorphism. For $n = 2$, let $S \to S_1$ and

Then \(ST \in \mathbb{R}_n \) implies \(S_1T_1 \in \mathbb{R}_n \), so \(\det (S_1T_1) = 1 \). Further, \(S^2 = -I \) implies \(S^2 = -I \), so \(\det S_1 = 1 \), since the minimum function of \(S_1 \) is \(x^2 + 1 \), and the characteristic function must therefore be a power of \(x^2 + 1 \). This completes the proof when \(n = 2 \).

2. Automorphisms of \(\mathbb{M}_2^+ \). We wish to determine the automorphisms of \(\mathbb{M}_2 \). Since every automorphism of \(\mathbb{M}_2 \) takes \(\mathbb{M}_2^+ \) into itself, we shall first determine all automorphisms of \(\mathbb{M}_2^+ \). For \(X \in \mathbb{M}_2^+ \), define \(\epsilon(X) = +1 \) or \(-1\), according as \(X \) is even or odd.

Theorem 2. Every automorphism of \(\mathbb{M}_2^+ \) is of one of the forms

(I) \[X \in \mathbb{M}_2^+ \rightarrow AXA^{-1}, \quad A \in \mathbb{M}_2 \]

or

(II) \[X \in \mathbb{M}_2^+ \rightarrow \epsilon(X) \cdot AXA^{-1}, \quad A \in \mathbb{M}_2. \]

That is, the automorphism group of \(\mathbb{M}_2^+ \) is generated by the set of "inner" automorphisms \(X \rightarrow AXA^{-1} \) \((A \in \mathbb{M}_2)\) and the automorphism \(X \rightarrow \epsilon(X) \cdot X \).

Proof. Let \(\tau \) be an automorphism of \(\mathbb{M}_2^+ \); it certainly leaves \(I^{(2)} \) and \(-I^{(2)}\) individually unaltered. Let \(S \) and \(T \) (as given by (1)) be mapped into \(S' \) and \(T' \). Then \((S')^2 = -I \). Since all second order fixed points are equivalent, there exists a matrix \(B \in \mathbb{M}_2 \) such that \(BS'B^{-1} = S \). Instead of \(\tau \), consider the automorphism \(\tau' \colon X \rightarrow BX'B^{-1} \), which leaves \(S \) unaltered. Assume hereafter that \(\tau \) leaves \(S \) invariant. (It is this sort of replacement of \(\tau \) by \(\tau' \) which we shall mean when we refer to some property holding "after a suitable inner automorphism.") Set

\[T' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \]

From \((ST)^3 = I\) we obtain \((ST')^3 = I\), whence \(b - c = 1 \). Since \(\det T' = 1 \), we get

\[ad = 1 + bc = c^2 + c + 1 > 0. \]

Set \(N = |a + d| \). If \(N \geq 3 \), consider the elements generated by \(S \) and \(T' \) \((\mod N)\). Since \(a + d \equiv 0 \) \((\mod N)\), we find that \((T')^2 \equiv I \) \((\mod N)\). Furthermore \((ST')^3 \equiv I \) \((\mod N)\); therefore \(S \) and \(T' \) generate \((\mod N)\) at most the 12 elements

\[\pm I, \pm S, \pm T', \pm ST', \pm T'S, \pm ST'S. \]

But if \(\tau \) is an automorphism, \(S \) and \(T' \) generate \(\mathbb{M}_2^+ \), which has more than 12 elements \((\mod N)\) for \(N \geq 3 \).

Therefore \(N \leq 2 \). Since \(ad > 0 \), either \(a = d = 1 \) or \(a = d = -1 \), and thence \(b = 1, c = 0 \) or \(b = 0, c = -1 \). There are 4 possibilities for \(T' \):
Since \(S \) and \(T \) generate \(\mathbb{M}_n^+ \), to determine \(\tau \) it is sufficient to specify \(S^\tau \) and \(T^\tau \). Thus every automorphism of \(\mathbb{M}_n^+ \) is of the form \(S \to BSB^{-1}, T \to BTB^{-1} \) (for some \(i, i = 0, 1, 2, 3 \)), where \(B \in \mathbb{M}_n \). If \(J \) is given by (2), we have:

\[
T_0 = T, \quad T_1 = STS^{-1}, \quad T_2 = -JTJ^{-1}, \quad T_3 = -SJTJ^{-1}S^{-1},
\]

and also \(S = -JSJ^{-1} \). The possible automorphisms are:

\[
i = 0: \quad S \to BSB^{-1}, \quad T \to BTB^{-1}.
\]

\[
i = 1: \quad S \to BS \cdot S \cdot S^{-1}B^{-1}, \quad T \to BS \cdot T \cdot S^{-1}B^{-1}.
\]

\[
i = 2: \quad S \to -BJ \cdot S \cdot J^{-1}B^{-1}, \quad T \to -BJ \cdot T \cdot J^{-1}B^{-1}.
\]

\[
i = 3: \quad S \to -BSJ \cdot S \cdot J^{-1}S^{-1}B^{-1}, \quad T \to -BSJ \cdot T \cdot J^{-1}S^{-1}B^{-1}.
\]

These automorphisms are of two types: for \(i = 0 \) and \(1 \), \(S \to \alpha S \alpha^{-1}, T \to \alpha T \alpha^{-1} \), which imply that \(X \in \mathbb{M}_n^+ \to AXA^{-1} \); for \(i = 2 \) and \(3 \), \(S \to -AS \alpha^{-1}, T \to -AT \alpha^{-1} \), which imply that \(X \in \mathbb{M}_n^+ \to e(X) \cdot AXA^{-1} \). This completes the proof.

3. Automorphisms of \(\mathbb{M}_n^+ \) and \(\mathbb{M}_n \). We are now faced with the problem of determining the automorphisms of \(\mathbb{M}_n \) from those of \(\mathbb{M}_n^+ \). We shall have the same problem for \(\mathbb{M}_n \) and \(\mathbb{M}_n^+ \). As we shall see, the passage from \(\mathbb{M}_n^+ \) to \(\mathbb{M}_n \) is trivial, and most of the difficulty lies in determining the automorphisms of \(\mathbb{M}_n^+ \). In this paper we shall prove the following results:

Theorem 3. For \(n > 2 \), the group of those automorphisms of \(\mathbb{M}_n^+ \) which are induced by automorphisms of \(\mathbb{M}_n \) is generated by

(i) the set of all "inner" automorphisms

\[
X \in \mathbb{M}_n^+ \to AXA^{-1} \quad (A \in \mathbb{M}_n),
\]

and

(ii) the automorphism

\[
X \in \mathbb{M}_n^+ \to X'^{-1}.
\]

Remark. When \(n = 2 \), the automorphism (ii) is the same as \(X \to SXS^{-1} \), hence is included in (i). The automorphism \(X \to e(X) \cdot X \) occurs only for \(n = 2 \). Furthermore, for odd \(n \) all automorphisms of \(\mathbb{M}_n^+ \) are induced by automorphisms of \(\mathbb{M}_n \).

Theorem 4. The generators of \(\mathfrak{A}_n \) are

(i) the set of all inner automorphisms

\[
X \in \mathfrak{A}_n \to AXA^{-1} \quad (A \in \mathfrak{M}_n),
\]
(ii) the automorphism $X \in \mathbb{M}_n \to X^t$.
(iii) for even n only, the automorphism

$$X \in \mathbb{M}_n \to (\det X) \cdot X,$$

and

(iv) for $n = 2$ only, the automorphism

$$X \in \mathbb{M}_2^+ \to \epsilon(X) \cdot X, \quad X \in \mathbb{M}_2^- \to \epsilon(JX) \cdot X,$$

where J is given by (2).

Further, when $n = 2$, the automorphism (ii) may be omitted from this list.

Let us show that Theorem 4 is a simple consequence of Theorem 3. Let τ be any automorphism of \mathbb{M}_n. By Corollary 1, τ induces an automorphism on \mathbb{M}_n^+ which, by Theorems 2 and 3, can be written as:

$$X \in \mathbb{M}_n^+ \to \alpha(X) \cdot AXA^{-1},$$

where $A \in \mathbb{M}_n$, $\alpha(X) = 1$ for all X or $\alpha(X) = \epsilon(X)$ for all X (this can occur only when $n = 2$), and where either $X^* = X$ for all X or $X^* = X^{-1}$ for all X.

Let Y and $Z \in \mathbb{M}_n$; then

$$YZ^r = (YZ)^r = \alpha(YZ) \cdot A(YZ)A^{-1},$$

whence

$$Y^r = \alpha(YZ) \cdot AY^*ZA^{-1}(Z^r)^{-1}.$$

Let $Z \in \mathbb{M}_n^-$ be fixed; then

$$Y^r = \alpha(YZ) \cdot AY^*B$$

for all $Y \in \mathbb{M}_n^-$,

where A and B are independent of Y. But then

$$AY^*B \cdot AY^*B = (Y^r)^2 = (Y^2)^r = \alpha(Y^2) \cdot A(Y^2)A^{-1},$$

so that

$$(BA)Y^*(BA) = \alpha(Y^2)Y^r.$$

Since this is valid for all $Y \in \mathbb{M}_n^-$, we see that of necessity $\alpha(Y^2) = 1$ for all Y, and $BA = \pm I$. This shows that either $Y^r = \alpha(YZ) \cdot AY^*A^{-1}$ for all $Y \in \mathbb{M}_n^-$, or $Y^r = -\alpha(YZ) \cdot AY^*A^{-1}$ for all $Y \in \mathbb{M}_n^-$. If $n = 2$ and $\alpha(YZ) = \epsilon(YZ)$, it is trivial to verify that either $\epsilon(YZ) = \epsilon(JY)$ for all $Y \in \mathbb{M}_2^-$ or $\epsilon(YZ) = -\epsilon(JY)$ for all $Y \in \mathbb{M}_2^-$. The remainder of the paper will be concerned with proving Theorem 3.

4. Canonical forms for involutions. In the proof of Theorem 3 we shall use certain canonical forms of involutions under similarity transformations.

Lemma 1. Under a similarity transformation, every involution $X \in \mathbb{M}_n$ such
that \(X^2 = I^{(n)} \) can be brought into the form

\[
W(x, y, z) = L + \cdots + L + (-1)^{(y)} + I^{(z)},
\]

where \(2x + y + z = n \) and

\[
L = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Proof. We prove first, by induction on \(n \), that every \(X \in \mathfrak{M}_n \) satisfying \(X^2 = I \) is similar to a matrix of the form

\[
\begin{pmatrix} I^{(1)} & \ast \\ M & -I^{(n-1)} \end{pmatrix}.
\]

For \(n = 1 \) and 2, this is trivial. Let the theorem be proved for \(n \), and assume that \(X^2 = I^{(n+1)} \), where \(n \geq 2 \). Then \(X^2 - I = 0 \), or \((X - I)(X + I) = 0\). If \(X - I \) is nonsingular, then \(X = -I \) and the result is obvious. Hence, supposing that \(X - I \) is singular (so that \(\lambda = 1 \) is a characteristic root of \(X \)), there exists a primitive column vector \(t = (t_1, \ldots, t_{n+1})' \) with integral elements such that \(t'X = t' \). Choose \(P \in \mathfrak{M}_{n+1} \) with first row \(t' \). Then

\[
PXP^{-1} = \begin{pmatrix} 1 & n' \\ \xi & X_1 \end{pmatrix},
\]

where \(n \) denotes a vector whose components are 0; thus

\[
X = \begin{pmatrix} 1 & n' \\ \xi & X_1 \end{pmatrix}.
\]

But

\[
I^{(n+1)} = X^2 = \begin{pmatrix} 1 & n' \\ (I + X_1\xi) & X_1^2 \end{pmatrix}
\]

shows that \(X_1^2 = I^{(n)} \) and \((I + X_1)\xi = n\). By the induction hypothesis,

\[
X_1 = \begin{pmatrix} I^{(m)} & 0 \\ M & -I^{(n-m)} \end{pmatrix},
\]

and, after making the similarity transformation, we have (as a consequence of \((I + X_1)\xi = n\))

\[
\begin{pmatrix} 2I^{(m)} & 0 \\ \gamma M & 0 \end{pmatrix}\xi = n.
\]

Therefore
\[x = (0, \cdots, 0, *, \cdots, *)', \]

where * denotes an arbitrary element. Thus

\[
X = \begin{pmatrix}
1 & n' \\
0 & I^{(m)} \\
\vdots & 0 \\
* & \vdots \\
* & M \\
* & -I^{(n-m)}
\end{pmatrix}
= \begin{pmatrix}
I^{(m+1)} & 0 \\
\overline{M} & -I^{(n-m)}
\end{pmatrix}.
\]

This completes the first part of the proof.

Suppose we now subject (5) to a further similarity transformation by

\[
\begin{pmatrix}
A^{(i)} \\
C \\
D^{(n-i)}
\end{pmatrix} \in \mathcal{M}_n.
\]

A simple calculation shows that we obtain a matrix given by (5) with \(M \) replaced by \(\overline{M} \), where \(\overline{M} = 2CA^{-1} + DMA^{-1} \). Choosing firstly \(C = 0 \), \(A \) and \(D \) unimodular, we find that \(\overline{M} = DMA^{-1} \), and by proper choice of \(A \) and \(D \) we can make \(\overline{M} \) diagonal. Supposing this done, secondly put \(A = I \), \(D = I \); we find that \(\overline{M} = M + 2C \). Since \(C \) is arbitrary, we can bring \(\overline{M} \) into the form

\[
\begin{pmatrix}
I^{(k)} & 0 \\
0 & 0
\end{pmatrix},
\]

where \(k \) is the rank of \(M \). Since we can interchange two rows and simultaneously interchange the corresponding columns by means of a similarity transformation, the lemma follows.

It is easily seen that

\[
W(x, y, z) = W(\bar{x}, \bar{y}, \bar{z})
\]

only when \(x = \bar{x} \), \(y = \bar{y} \), and \(z = \bar{z} \). Furthermore, changing the order of terms in the direct summation does not alter the similarity class. The number \(A_n \) of nonsimilar involutions in \(\mathcal{M}_n \) is therefore equal to the number of solutions of \(2x + y + z = n \), \(x \geq 0 \), \(y \geq 0 \), \(z \geq 0 \). This gives

\[
A_n = \begin{cases}
\frac{(n + 2)^2}{2}, & n \text{ even}, \\
\frac{(n + 1)(n + 3)}{4}, & n \text{ odd}.
\end{cases}
\]

(6)
Let B_n be the number of nonsimilar involutions in \mathfrak{M}_n^+, where the similarity factors are in \mathfrak{M}_n. One easily obtains

\[
B_n = \begin{cases}
\frac{(A_n - 1)}{2}, & \text{if } n \equiv 0 \, (\text{mod } 4), \\
A_n/2, & \text{otherwise.}
\end{cases}
\]

5. Automorphisms of \mathfrak{M}_3^+. We shall now prove Theorem 3 for $n=3$. Let

\[
I_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in \mathfrak{M}_3^+.
\]

Then $I_2^2 = I^{(3)}$. Let τ be any automorphism of \mathfrak{M}_3^+ and let $X = I_1$; then $X^2 = I^{(3)}$. By Lemma 1, the matrices I_1, I_2, and $I^{(3)}$ form a complete system of non-similar involutions in \mathfrak{M}_3^+. Therefore

\[X = I_1 \text{ or } I_2.\]

After a suitable inner automorphism, we may assume that either $I_1 \to I_1$ or $I_1 \to I_2$. We shall show that this latter case is impossible by considering the normalizer groups of I_1 and I_2. The normalizer group of I_1, that is, the group of matrices $\in \mathfrak{M}_3^+$ which commute with I_1, consists of all elements of \mathfrak{M}_3^+ of the form

\[
\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix},
\]

and is isomorphic to \mathfrak{M}_3. That of I_2 consists of all elements of \mathfrak{M}_3^+ of the form

\[
\begin{pmatrix} a & 0 & 0 \\ (a-e)/2 & e & f \\ -h/2 & h & i \end{pmatrix},
\]

and is isomorphic to that subgroup \mathfrak{G} of \mathfrak{M}_2 consisting of the elements

\[
\begin{pmatrix} e & f \\ h & i \end{pmatrix} \in \mathfrak{M}_2, \quad \begin{cases} e \equiv 1 \\ h \equiv 0 \text{ (mod 2)} \end{cases}
\]

Since e and i are both odd, \mathfrak{G} contains no element of order 3, and hence is not isomorphic to \mathfrak{M}_2. But then $I_1 \to I_2$ is impossible.

We may assume thus that after a suitable inner automorphism, I_1 is invariant. Thence elements of \mathfrak{M}_3^+ which commute with I_1 map into elements of the same kind, so that
\[
\begin{pmatrix} X & \eta' \\ n & \pm 1 \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} X^r & \eta' \\ n & \pm 1 \end{pmatrix}.
\]

Since this induces an automorphism \(X \rightarrow X^r \) on \(\mathfrak{M}_2 \), we see that \(\det X^r = \det X \), and hence the plus signs go together, and so do the minus signs. By Theorem 2 and that part of Theorem 4 which follows from Theorem 2, there exists a matrix \(A \in \mathfrak{M}_2 \) such that \(X^r = \pm AXA^{-1} \); here, the plus sign certainly occurs when \(X \) is an even element of \(\mathfrak{M}_2^+ \), and if the minus sign occurs for one odd element of \(\mathfrak{M}_2^+ \), then it occurs for every odd element of \(\mathfrak{M}_2^+ \). By use of a further inner automorphism using the factor \(A^{-1} + I^{(1)} \), we may assume that

\[
\begin{pmatrix} X & \eta' \\ n & \pm 1 \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm X & \eta' \\ n & \pm 1 \end{pmatrix},
\]

so that

\[
M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow M \quad \text{or} \quad M \rightarrow N = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
\]

Since

\[
N = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot M \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

we may assume (after a further inner automorphism, if necessary) that \(I_1, M, \) and \(N \) are all invariant under the automorphism (but (8) need not hold).

Thus, after a suitably chosen inner automorphism, we have \(I_1, M, \) and \(N \) invariant. Therefore there exist \(A, B, \) and \(C \in \mathfrak{M}_2 \) such that

\[
\begin{pmatrix} X & \eta \\ n' & \pm 1 \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm AXA^{-1} & \eta \\ n' & \pm 1 \end{pmatrix},
\]

\[
\begin{pmatrix} \pm 1 & \eta' \\ n & X \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm 1 & \eta' \\ n & \pm BXB^{-1} \end{pmatrix},
\]

\[
\begin{pmatrix} a & 0 & b \\ 0 & \pm 1 & 0 \\ c & 0 & d \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \alpha & 0 & \beta \\ \gamma & 0 & \delta \end{pmatrix},
\]

where

\[
\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \pm C \begin{pmatrix} a & b \\ c & d \end{pmatrix} C^{-1},
\]

and \(\eta = (0, 0)' \). Here, the +1 on the left goes with the +1 on the right al-
ways (and the -1's go together); further, when X is an even element of \mathfrak{M}_2^+, the plus sign occurs before AXA^{-1}, BXB^{-1}, and CXC^{-1}, while if the minus sign occurs before one of these for any odd $X \in \mathfrak{M}_2^+$, it occurs there for every odd $X \in \mathfrak{M}_2^+$.

Now we may assume that at most one of A, B, and C has determinant -1; for if both A and B (say) have determinant -1, apply a further inner automorphism (with factor N) which leaves I_1, M, and N invariant and changes the signs of $\text{det} A$ and $\text{det} B$. Suppose hereafter, without loss of generality, that $\text{det} A = \text{det} B = 1$.

Next, N is invariant, but by (9) goes into

$$\left(\begin{array}{c} \pm A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} \\ n \\ -1 \end{array} \right),$$

so that

$$\pm A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$}

This gives two possibilities:

$$A = I^{(2)} \quad \text{or} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$}

The same holds true for B (but not necessarily for C, since $\text{det} C = \pm 1$).

Suppose firstly that either A or B is $I^{(2)}$, say $A = I^{(2)}$. Then

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \left(\begin{array}{c} \pm \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \end{array} \right).$$

Case 1. T invariant. Then

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

are both invariant. (The first matrix is invariant in virtue of the remarks after (9); the second is invariant because it is M times the first.) For either possible choice of B we find that

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \left(\begin{array}{c} -1 & 0 & 0 \\ 0 & \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{array} \right).$$
Therefore

\[
U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
\]

is mapped into

\[
\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{cases} U, \text{ if } + \text{ is used,} \\
V, \text{ if } - \text{ is used,}
\end{cases}
\]

where \(V = I_1 U_1 I_1^{-1} \). Thus, in this case, \(T \to T = I_1 T I_1^{-1} \), and either \(U \to U \) or \(U \to I_1 U I_1^{-1} \). Since \(T \) and \(U \) generate \((9) \mathfrak{M}^+_a\), the automorphism is inner.

Case 2.

\[
T \to \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

Then

\[
\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \to \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

and one finds in this case that

\[
U \to \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.
\]

If we set \(Z = T U^2 \), then

\[
(10) \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (UZ^{-1})^2 UZ^2.
\]

Now certainly the left side of (10) maps into

\[
\begin{pmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

\((9) \text{ L. K. Hua and I. Reiner, loc. cit.}\)
whereas, knowing T^r and U^r, we can compute Z^r and hence can find the image of the right side of (10). We readily find (for either value of U^r) that the right side of (10) maps into

$$\begin{pmatrix} 1 & \ldots \\ 3 & \ldots \\ \vdots & \ddots \end{pmatrix},$$

and hence we have a contradiction.

Therefore case 2 cannot occur, and so if either A or B equals $I^{(2)}$, the automorphism is inner. Suppose hereafter that

$$A = B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

In this case we have

$$T \rightarrow \left(\pm \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \right).$$

Case 1.

Then as before

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

are invariant, and again $U^r = U$ or V. After a further inner automorphism by a factor of I_1 (in the latter case) we also have $U \rightarrow U$. But then

$$T \rightarrow T'^{-1}, \quad U \rightarrow U'^{-1}.$$

(This automorphism is easily shown to be a non-inner automorphism.)

Case 2.

$$T \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then
and again we find that there are two possibilities for U^r, each of which leads to a contradiction, just as in case 2. Therefore Theorem 3 holds when $n = 3$.

6. A fundamental lemma. Theorem 3 will be proved by induction on n; the result has already been established for $n = 2$ and 3. In going from $n - 1$ to n, the following lemma is basic:

Lemma 2. Let $n \geq 4$, and define $J_1 = (-1)^n I^{(n-1)}$. In any automorphism τ of \mathcal{M}_n, $J_1^\tau = \pm AJ_1A^{-1}$ for some $A \in \mathcal{M}_n$.

Proof. By Corollary 1, $J_1^\tau \in \mathcal{M}_n^+$, and J_1^τ is an involution. After a suitable inner automorphism, we may assume that $J_1^\tau = W(x, y, z)$ (as defined by (4)), where $2x + y + z = n$ and $x + y$ is odd. Every element of \mathcal{M}_n which commutes with J_1 maps into an element of \mathcal{M}_n which commutes with W. Every matrix in \mathcal{M}_n^+ maps into a matrix in \mathcal{M}_n^+. Combining these facts, we see that the group G_1 consisting of those elements of \mathcal{M}_n^+ which commute with J_1 is isomorphic to G_2, the corresponding group for W. If we prove that this can happen only for $x = 0, y = 1, z = n - 1$ or $x = 0, y = n - 1, z = 1$, the result will follow.

The group G_1 consists of the matrices in \mathcal{M}_n^+ of the form $(\pm 1)^x X_1$, $X_1 \in \mathcal{M}_{n-1}$, and so clearly $G_1 \cong \mathcal{M}_{n-1}$.

The group G_2 is easily found to consist of all matrices $C \in \mathcal{M}_1^+$ of the form (we illustrate the case where $x = 2$):

$$
\begin{bmatrix}
\alpha_1 & 0 & 0 & \cdots & 0 & 2\alpha_1 & \cdots & 2\alpha_x \\
\alpha_2 & 0 & 0 & \cdots & 0 & 2\beta_1 & \cdots & 2\beta_z \\
\alpha_3 & 0 & 0 & \cdots & 0 & 2\delta_1 & \cdots & 2\delta_z \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \cdots & \vdots \\
\alpha_y & 0 & 0 & \cdots & 0 & 2\gamma_1 & \cdots & 2\gamma_z \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \cdots & \vdots \\
\alpha_z & 0 & 0 & \cdots & 0 & 2\delta_1 & \cdots & 2\delta_z \\
\end{bmatrix}
$$

with $2x$ rows, y columns, and z columns.
For the moment put

$$K = \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix} + I^{(n-2z)}.$$

Then a simple calculation gives:

$$KCK^{-1} = \begin{bmatrix} a_1 & 0 & a_2 & 0 & 0 & \cdots & 0 & 2\beta_1 & \cdots & 2\beta_z \\ 0 & d_1 & 0 & d_2 & \alpha_1 & \cdots & \alpha_y & 0 & \cdots & 0 \\ a_3 & 0 & a_4 & 0 & 0 & \cdots & 0 & 2\delta_1 & \cdots & 2\delta_z \\ 0 & d_3 & 0 & d_4 & \gamma_1 & \cdots & \gamma_y & 0 & \cdots & 0 \\ 0 & -2\epsilon_1 & 0 & -2\xi_1 & & & & U & 0 \\ \vdots & \vdots & \vdots & \vdots & & & & \vdots & \vdots \\ 0 & -2\epsilon_y & 0 & -2\xi_y & & & & U & 0 \\ \eta_1 & 0 & \theta_1 & 0 & & & & 0 & V \\ \vdots & \vdots & \vdots & \vdots & & & & \vdots & \vdots \\ \eta_z & 0 & \theta_z & 0 & & & & \vdots & \vdots \end{bmatrix}$$

and so C is similar to

$$\begin{bmatrix} a_1 & a_2 & 2\beta_1 & \cdots & 2\beta_z \\ a_3 & a_4 & 2\delta_1 & \cdots & 2\delta_z \\ \eta_1 & \theta_1 & & & \\ \vdots & \vdots & & & V \\ \eta_z & \theta_z & & & \end{bmatrix} + \begin{bmatrix} d_1 & d_2 & \alpha_1 & \cdots & \alpha_y \\ d_3 & d_4 & \gamma_1 & \cdots & \gamma_y \\ -2\epsilon_1 & -2\xi_1 & & & \\ \vdots & \vdots & & & U \\ -2\epsilon_y & -2\xi_y & & & \end{bmatrix}$$

$$= \begin{bmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{bmatrix}^x + \begin{bmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{bmatrix}^y,$$

with a fixed similarity factor depending only on W. Therefore $\mathfrak{G}_Z \cong \mathfrak{G}$, where $\mathfrak{G} = \mathfrak{G}(x, y, z)$ is the group of matrices in \mathfrak{M}_n^+ of the form

$$\begin{bmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{bmatrix}^x + \begin{bmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{bmatrix}^y,$$

where $S_1 \equiv S_2 \pmod{2}$. Here $2x+y+z=n$ and $x+y$ is odd.

We wish to prove that $\mathfrak{M}_{n-1} \cong \mathfrak{G}(x, y, z)$ only when $x=0$, $y=1$, $z=n-1$ or $x=0$, $y=n-1$, $z=1$. In order to establish this, we shall prove that in all other cases the number of involutions in \mathfrak{G} which are nonsimilar in \mathfrak{G} is greater than the number of involutions in \mathfrak{M}_{n-1} which are nonsimilar in \mathfrak{M}_{n-1};
this latter number is, of course, A_{n-1} (given by (6)).

We shall briefly denote the elements of \mathfrak{G} by $A + B$, where

$$A = \begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}.$$

If $A_1 + B_1$ and $A_2 + B_2$ are two involutions in \mathfrak{G}, where either $A_1 \leq A_2$ in \mathfrak{M}_{x+z} or $B_1 \leq B_2$ in \mathfrak{M}_{x+y}, then certainly $A_1 + B_1 \neq A_2 + B_2$ in \mathfrak{G} (these may be similar in \mathfrak{M}_n, however). Therefore, the matrices $A + B$, where

$$A = I^{(a_1)} + (-1)^{(b_1)} + L + \cdots + L,$$

$$B = I^{(a_2)} + (-1)^{(b_2)} + L + \cdots + L,$$

obtained by taking different sets of values of $(a_1, b_1, c_1, a_2, b_2, c_2)$, if they lie in \mathfrak{G}, are certainly nonsimilar in \mathfrak{G}. Here we have

$$a_1 + b_1 + 2c_1 = x + z, \quad a_2 + b_2 + 2c_2 = x + y, \quad b_1 + b_2 + c_1 + c_2 \text{ even.}$$

If $x \neq 0$, we impose the further restriction that $c_1 \leq (z+1)/2$, $c_2 \leq (y+1)/2$, and that in B instead of L we use L'. These conditions will insure that $A + B \subseteq \mathfrak{G}$. We certainly do not (in general) get all of the nonsimilar involutions of \mathfrak{G} in this way, but instead we obtain only a subset thereof. Call the number of such matrices N.

For $x = 0$, we have $N = B_1 B_2 + (A_1 - B_1)(A_2 - B_2)$. Since y is odd, $A_y = 2B_y$, and therefore

$$N = B_y A_y = B_y A_{n-y}.$$

Case 1. n even. Then $N = (y+1)(y+3)(n-y+1)(n-y+3)/32$. If neither y nor $n-y$ is 1 (certainly neither can be zero), then

$$(y+1)(n-y+1) \geq 4(n-2) \quad \text{and} \quad (y+3)(n-y+3) \geq 6n,$$

so that

$$N \geq (24/32) n(n-2).$$

For $n = 4$, $x = 0$, either $y = 1$ or $z = 1$. For $n \geq 6$, we have $N > A_{n-1}$. Hence in
this case \(\mathfrak{S} \) is not isomorphic to \(\mathfrak{M}_{n-1} \). (If either \(y \) or \(n-y=1 \), then \(W(x, y, z) = \pm J_1 \).)

Case 2. \(n \) odd. Then \(N = (y+1)(y+3)(n-y+2)^2/32 \). We find again that \(N > A_{n-1} \) for \(n \geq 5 \).

This settles the cases where \(x = 0 \). Suppose that \(x \neq 0 \) hereafter. Then \(N \) is the number of solutions of

\[
\begin{align*}
 a_1 + b_1 + 2c_1 &= x + z, \\
 a_2 + b_2 + 2c_2 &= x + y, \\
 b_1 + b_2 + c_1 + c_2 &= \text{even},
\end{align*}
\]

\[0 \leq c_1 \leq \frac{z+1}{2}, \quad 0 \leq c_2 \leq \frac{y+1}{2} \cdot\]

Using \([r]\) to denote the greatest integer less than or equal to \(r \), we readily find that \(N \) is given by

\[
\frac{1}{2} \left[\frac{z+3}{2} \right] \left[\frac{y+3}{2} \right] (x + z + 1 - \left[\frac{z+1}{2} \right])(x + y + 1 - \left[\frac{y+1}{2} \right]).
\]

By considering separately the cases where \(y \) and \(z \) are both even, one even and one odd, and so on, it is easy to prove that \(N \geq A_{n-1} \) in all cases except when both \(y \) and \(z \) are zero. Leaving aside this case for the moment, consider the matrix \(A_0 + I(x+y) \in \mathfrak{S} \), where \(A_0 \in \mathfrak{M}_{x+z} \) is given by

\[
A_0 = \begin{bmatrix}
1 & 2 & 2 & \cdots & 2 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{bmatrix}.
\]

The matrix \(A_0 + I(x+y) \) is certainly an involution in \(\mathfrak{S} \). Since, in \(\mathfrak{M}_{x+z} \),

\[
A_0 = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -1
\end{bmatrix} = A_1,
\]

\(A_0 + I(x+y) \) can be similar (in \(\mathfrak{S} \) only to that matrix (counted in the \(N \) matrices) of the form \(A_1 + I(x+y) \). But from

\[
A_1 \cdot \begin{bmatrix}
a_1 & a_2 & \cdots & a_x & 2b_1 & \cdots & 2b_z \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} = \begin{bmatrix}
a_1 & a_2 & \cdots & a_x & 2b_1 & \cdots & 2b_z \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} \cdot A_0
\]

we obtain
\[a_1 = a_2 = \cdots = a_x = 2b_1, \]

which is impossible. Hence \(\mathfrak{G} \) contains at least \(N + 1 \) nonsimilar involutions, and therefore \(\mathfrak{G} \) is not isomorphic to \(\mathfrak{M}_{n-1} \) in these cases.

We have left only the case \(y = z = 0, x = n/2 \); then \(n \) is singly even. Here we may choose \(A = W(c_1, b_1, a_1), B = W(c_2, b_2, a_2) \), where

\[a_1 + b_1 + 2c_1 = x, \quad a_2 + b_2 + 2c_1 = x, \quad b_1 + b_2 \text{ even.} \]

Then \(A + B \in \mathfrak{G} \), and the various matrices are nonsimilar. The number of such matrices is \((x+1)(x+2)(x+3)/12\), which is greater than \(A_{n-1} \) for \(n \geq 14 \). For \(n = 6 \), \(\mathfrak{M}_{n-1} \) contains an element of order 5, while \(\mathfrak{G} \) does not. For \(n = 10 \), \(\mathfrak{M}_{n-1} \) contains an element of order 7, while \(\mathfrak{G} \) does not. This completes the proof of the lemma.

7. Proof of Theorem 3. We are now ready to give a proof of Theorem 3 by induction on \(n \). Hereafter, let \(n \geq 4 \) and suppose that Theorem 3 holds for \(n - 1 \). If \(\tau \) is any automorphism of \(\mathfrak{M}_n \), by Corollary 1 and Lemma 2 we know that \(\tau \) takes \(\mathfrak{M}_n^+ \) into itself, and \(J_1^* = \pm A J_1 A^{-1} \). If we change \(\tau \) by a suitable inner automorphism, then we may assume that \(J_1 \to \pm J_1 \). When \(n \) is odd, certainly \(J_1 \to J_1 \); when \(n \) is even, by multiplying \(\tau \) by the automorphism \(X \in \mathfrak{M}_n \to (\det X) \cdot X \) if necessary, we may again assume \(J_1 \to J_1 \).

Therefore, every \(M \in \mathfrak{M}_n^+ \) which commutes with \(J_1 \) goes into another such element, that is,

\[
\begin{pmatrix}
\pm 1 & n' \\
n & X
\end{pmatrix}^r = \begin{pmatrix}
\pm 1 & n' \\
n & X^r
\end{pmatrix}.
\]

Since this induces an automorphism on \(\mathfrak{M}_{n-1} \), we have \(\det X^r = \det X \), so that the plus signs go together, as do the minus signs. Furthermore, by our induction hypothesis,

\[
X^r = \pm AX^*A^{-1},
\]

where \(A \in \mathfrak{M}_{n-1} \) and either \(X^* = X \) for all \(X \in \mathfrak{M}_{n-1} \) or \(X^* = X'^{-1} \) for all \(X \in \mathfrak{M}_{n-1} \); here the minus sign can occur only for \(X \in \mathfrak{M}_{n-1}^+ \), and if it occurs for one such \(X \), it occurs for all \(X \in \mathfrak{M}_{n-1}^+ \). After changing our original automorphism by a factor of \(I^{(n)} A^{-1} \), we may assume that \(X^r = \pm X^* \).

Let \(J_n \) be obtained from \(I^{(n)} \) by replacing the \(n \)th diagonal element by \(-1 \). Then

\[
J_n = \begin{pmatrix}
-1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{pmatrix}
\]

\[
J_n J_n = \begin{pmatrix}
-1 & n' \\
n & X
\end{pmatrix} = \begin{pmatrix}
1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 1 & 0 \\
0 & \cdots & 0 & -1
\end{pmatrix}^*.
\]
The minus sign here is impossible by Lemma 2, since \(n \geq 4 \). Hence \(J_1J_n \) is invariant, and therefore so is \(J_n \). By the same reasoning all of the \(J_v \) \((v = 1, \ldots, n)\) are invariant.

From the above remarks we see that for \(X \in \mathcal{M}^+_n \),

\[
\begin{pmatrix} 1 & n' \\ n & X \end{pmatrix}^r = \begin{pmatrix} 1 & n' \\ n & A_1X^*A_1^{-1} \end{pmatrix}, \ldots, \begin{pmatrix} X & n' \\ n' & 1 \end{pmatrix}^r = \begin{pmatrix} A_nX^*A_n^{-1} & n' \\ n' & 1 \end{pmatrix},
\]

where \(A_v \in \mathcal{M}^+_{n-1} \), and in fact \(A_1 = I \). Now suppose that \(Z \in \mathcal{M}^+_{n-2} \), and form \(I^{(2)}Z \). Since it commutes with both \(J_1 \) and \(J_2 \), its image must do likewise. But then

\[
A_1\begin{pmatrix} 1 & n' \\ n & Z \end{pmatrix}A_1^{-1} = \begin{pmatrix} 1 & n' \\ n & Z \end{pmatrix}
\]

for every \(Z \in \mathcal{M}^+_{n-2} \). Setting

\[
A_1 = \begin{pmatrix} a & \xi' \\ \psi & A \end{pmatrix}
\]

we obtain \(\xi'Z = \xi' = \eta = \bar{Z}\psi \). Since this holds for all \(Z \in \mathcal{M}^+_{n-2} \), we must have \(\xi = \eta = n \), so that \(A_1 \) is itself decomposable. A similar argument (considering the matrices commuting with both \(J_1 \) and \(J_v \) for \(v = 3, \ldots, n \)) shows that \(A_1 \) is diagonal. Correspondingly, all of the \(A_v \) are diagonal. It is further clear that all of the \(A_v \) \((v = 1, \ldots, n)\) are sections of a single diagonal matrix \(D^{(n)} \). Using the further inner automorphism factor \(D^{-1} \), we may henceforth assume that \(X^r = X^* \) for every decomposable \(X \in \mathcal{M}^+_n \), where either \(X^* = X \) always or \(X^* = X'^{-1} \) always. Since \(\mathcal{M}^+_n \) is generated by the set of decomposable elements of \(\mathcal{M}^+_n \), the theorem is proved.

Tsing Hua University,
Peking, China.
University of Illinois,
Urbana, Ill.