ON FERMAT’S LAST THEOREM
(THIRTEENTH PAPER)

BY
TARO MORISHIMA

1. Introduction. In the present paper we shall investigate Case I of
Fermat's last theorem.

Kummer(?) showed that if / is an odd prime and x'4y'42' =0 is satisfied
in rational integers prime to each other and to /, then

d=?" log (x + ey)
Bn d.l)l—2n

] = 0 (mod /),

where B;=1/6, B,=1/30, and so on, are the numbers of Bernoulli, and
n=1,2,3,-.-,(—3)/2. Mirimanoff(?) proved that these criteria may be
replaced by

anl—%(t) =0 (mOd l), n=123---, (l - 3)/2’
where
—t=x/y, y/%, x/z, 2/%, v/3, 2/,
and
-1
falt) = 25 rvem,
r=0
He also derived the criteria
fin(®)fa(t) = 0 (mod ),
fl-l(t) =0 (mOd l)v n=23- .-, (l - 1)/2
The writer(®) extended the above results and proved the following
theorems:
THEOREM A(%). If I is an odd prime and
(1 a4+ g4 9=0

1s satisfied in integers a, B, 7y belonging to the cyclotomic field k() prime to 1—¢,
where { is a primitive lth root of unity, ¢ =e**/i!, then we have

Received by the editors April 27, 1950.
() E. Kummer, Abhandlungen der Kéniglichen Akademie der Wissenschaften zu Berlin
(1857).
(?) D. Mirimanoff, Journal fiir die Mathematik vol. 128 (1905) pp. 45-68.
(3 T. Morishima, Jap. J. Math. vol. 11 (1935) pp. 241-252, Theorem 3.
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(2) bnfl—n(t) = 0 (mOd l)’
forn=1,2,3,:---,1—2and
3) — t=a/b,b/a, a/c, c/a, b/c, ¢/b (mod 1),

where bo=1, by= —1/2, by, =(—1)""1B,, by,11=0, and a, b, c are rational inte-
gers and

a=g¢a B=0bv=c(mod1l — ).

THEOREM B(%). If (1) is satisfied in integers in k($) prime to 1 —¢, then we
have

Jia(O)fa(t) = 0 (mod /)
for n=1,2, ..., 1—1, the other symbols being defined as in Theorem A.

Theorem B is equivalent to Theorem A, that is, Theorem B follows from
(2) and conversely(%).
In the following §§4 and 5 we shall find results which are obtained from
the above theorems.
2. Extension of Vandiver’s theorem(®). Let / be an odd prime and let
a=a({) be an integer or fraction in the cyclotomic field £(¢) prime to 1 —¢, {
being a primitive /th root of unity. For brevity set

B d» log a(e?) N dra(e?)
log ol =[S0 o= [5]

Set also 3/a= 8, where «, 3 are integers in 2({) prime to 1 —{, then
4 [log (@ + ¢*8)]™ = [log a]™ + [log (1 + ¢*8)]™

and

[log (1 4 ¢%)]m™ = " (%) ]<m—1,

[ 1+ ¢
- I[_l . (m—=1) iy (g-sa)l (m—1)
= (;5)2(—1) (s“5):| [G 5) 1+g—~5]

-1 N (m—-l)— (g-a&)’ (m—1) )
_§<—1> rG e B s

-1

>

r=0 .

r+l] (m) l

— [log (1 + ¢8)]

(mod 1),

(4) T. Morishima, loc. cit. p. 252. For k=1, Theorem 7 reduces to Theorem B.
() D. Mirimanoff, loc. cit.
(%) H. S. Vandiver, Proc. Nat. Acad. Sci. U.S.A. vol. 11 (1925) pp. 292-298.
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where s=1,2, - -+, 1—-1;2=m=1-2;
d(e*?5(e?))r+! '
((fa&)ﬁl)’ = —_(e——(e_))— (f = 0) 1’ 2» tt I - l)a
dy
= [6(¢*) Jomo = 8(1),

and a--f is prime to l—g‘. Hence

[log (1 + ¢8) )™ = E (— )r [(g-oa)r+l](m)
60 rm=0 1
1 -1 (_l)r m
5 = Com. [cCrHDs](mm) [5re1](m
0 l+5o§,+1§ » feeroeomn ]
= Z Q™" (mod 1),
n=0
where
—_ r m—n—1[8r+1|(n) = ..
Gmn 1+(sc.,.,,'_zo( Dr(r+ 1) [67+1] n=1,2,---,m)
and
Um0 = Zrm—l( 50)7
(6) 1 + 0 r=1

110 f».( 80) (mod ).

Now, using (4) and (5), we have
[log {(a+ ¢*8)(a + ¢8)-1} [ = [log (o + £*8)]™ — [log (o + ¢B)]m
= [log (1 + £9)]™ — [log (1 + §8)]™
= i (s™* — 1)am,» (mod }),
ne=0
whence, if
0] [log {(e + ¢*B)(a + ¢B)*} ] = 0 (mod )
for s=2,3,--,1—1, then
m—1
D (™" — 1)amn = 0 (mod I) (s=2,3---,1—1),
n=0
where 2<m =1—2. Hence we obtain

(8) @mn = 0 (mod 1)
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for n=0,1, - - -, m—1, since the determinant
2-1 2—-1 ... 2m_1
3—-1 32—-1 .. 3m—1
m+1)—1 m+1)2—1.--(m+1)"—1
From (6), (7), and (8) we have the following lemma:

LemMmA 1. If I is an odd prime and, for s=2, - - -, 1—1, (7) is possible in
integers a, B in k() prime to 1 —¢, then we have

Sm(—380) = 0 (mod I),
where

_ B

8 = —,
a(l)

a=a(l), B=5(1) (mod1-2),

1+aos“—}‘—’3¢0<mod1—r),

and a(1), B(1) are rational integers.
We now consider the relation
al + ﬁl + 'Yl = 0,

where ! is an odd prime and «, 8, ¥ are integers in k() prime to 1—¢{. From
this relation we obtain

-1
IT@+e =—,

=0

which gives

@+¢B) =t  (s=01,2---,1—1),

where b is the greatest common ideal divisor of «, 8 and ao, a1, - - -, a1
are ideals in k({). Hence we have

11 iQi-1

(9) (@+ B+ t8) " = daa (s=1,2,---,1—1).

We now employ the law of reciprocity(?) between two integers w! ™!, 6! in
k($), where

(") H. Hasse, Jber. Deutschen Math. Verein. vol. 6 (1930) p. 110.
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Wy = (a + I‘ﬁ)(a + fﬁ)l_lr
0r = 0(),

and the principal ideal (0,) is the /th power of an ideal in k() which is prime
to w, and 1—{. Then we may write, using (9),

-G

L= 5 (~1)"log ol log {06} 1.

n=2

(10)

where

Hence we have

L= § (—=1)*r*=[log w,] ™ [log 6(5)] 4~ = 0 (mod 1) ~

n=2
forr=1,2,--.,1-3,5s=1,2,...,1l—1, whence
(11) [log w, ] [log 6(¢)]¢—™ = 0 (mod 1)
n=23--+,1—2;s=12,--+,1=1),
since the determinant. [#+~*| is prime to I. Now, if
[log 6()]¢=» = 0 (mod 2),
then we take
(12) fa(®) [log 8(£)] 4= = 0 (mod 1)
instead of
[log w.]™ [log 6(5)]¢=™ = 0 (mod J),
where
t= —b/a,
a=a, B=b(mod1l—Y¢)
and a, b are rational integers. If
[log 6()] 4= 5 0 (mod 1),
then we obtain from (11) |
[log ,]™ = 0 (mod 1) (s=1,2,---,1-1)
which gives, using Lemma 1 and (10),
fa(®) = 0 (mod J),
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whence :
(13) J+() [log 6(£)] 4= = 0 (mod J),
where '
L= —b/e,
a=a, B=b(modl—Y)

and a, b are rational integers.
In the same way (12) and (13) are satisfied by

—t=a/b,a/c, c/a, b/c, c/b,
where
a=a, B =b, y=c(mod1l —¢)

and @, b, ¢ are rational integers.
From the relation

at+ gt +yt=0
we also obtain
@'+ b + ¢ = 0 (mod (1 - {)Y),

whence ‘

a' + b + ¢t = 0 (mod 1?),

a+ b+ ¢ =0 (mod ).
Hence
(a4 b= — ¢ =a' 4 b (mod 1?)

which gives

(1 —=t=1— ¢ (mod-1?,
where —t=a/b, b/a. From this relation we have easily

(14) E r=2%r = 0 (mod 1).

re=1

In the same way (14) is satisfied by —t=a/c, ¢/a, b/c, ¢/b.
Hence from (12), (13), and (14) we have

THEOREM 1. If I is an odd prime and
al+ g +4t=0

is satisfied in integers o, B, v in the cyclotomic field k(¢) prime to 1—¢ and
0((') is an integer which is the lth power of an ideal in k(¢) prime to a, B, v,
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and 1—{, wherer=1, 2, - - -, 1—3, then we have
Ja(t) [log 6() ]¢=™ = 0 (mod 1) (n=23---,1—-1)
for —t=a/b, b/a, a/c, c/a, b/c, c/b, where
-1
fat) = 2,

r=0

[log g(g-)](»o = [M] ,
dvm v==0

a=a f=b y=c(modl-y)
and a, b, ¢ are rational integers.

The above demonstration of Theorem 1 is analogous to that of Theorem
A, and also, using the above method, we can obtain Theorem A by taking the
unit

oi=m)

instead of (¢), where r is a primitive root of /. In particular, if «, 8, v are
rational integers x, ¥, 2 respectively, Theorem 1 gives Vandiver’s theorem(?).

3. Irregular ideal classes in the cyclotomic field. Let / be an odd prime
and let the number of ideal classes in the cyclotomic field k({) be k=1Irq with
(¢, 9=1.

Consider the group of classes of all the ideals in the field of the form a?
where a is an ideal in k({). This gives a group of order I and is called the ir-
regular class group of k(¢).

Pollaczek(?) gave the following results:

LEMMA 2(%). There exists in k({) a system of fundamental units n; which have
the property
o= i=1,2-,0-3)/2
where £; is a unit in k() and s stands for the substitution ({:$7), r being a primai-
tive root of 1.

LeEMMA 3(19). In k() we may select a basis, which we shall call a normal
basis, for the irregular class group

Clyc2r"' th
such that

(®) H. S. Vandiver, Proc. Nat. Acad. Sci. U.S.A. vol. 11 (1925) pp. 292-298.
(9 F. Pollaczek, Math. Zeit. vol. 21 (1924).
(19) F. Pollaczek, loc. cit.; T. Morishima, Jap. J. Math. vol. 10 (1933) p. 10S.
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8—cy

C: "=1, i=1,2+--,¢,
where the c's are positive rational integers, s being the substitution (:¢7).
We now designate by
(15) Ou Oz

the C’s mentioned in Lemma 3 such that the corresponding ¢’s are quadratic
residues, modulo /, and by

(16) le N2v"'

the C’s mentioned in Lemma 3 in which the ¢'s are quadratic nonresidues.
We also designate by

P1, P2, - -
the ideals of classes NV in (16) such that
b= () e = i=1,2,-,

where ¢; =r@+01™"1 [mi ig the order of p; and p;, w; are integers in k({), and by

a1, G2, *
the ideals of classes Q in (15) such that

n ng
T A

e - ‘
qs =(pi')r P = w; , 1'=1v2v°"7
where G; =r(-1-201""1 [ni ig the order of q;, and p;, @; are integers in k().
The integer p; satisfying the above conditions we shall call the integer defined
by the ideal ;.
With this notation we have the following lemma.

LEMMA 4(1Y). If among the elements of a normal basis of the irregular class
group of k(¢) there exists for a certain quadratic non-residue j exactly z; classes

7 Nupy Nuy, -+
such that
N =1
and b,;=3 (mod 1), then there are in the same class group z; or z;—1 basis classes
Qopr Qogy *
where
0 =1

(1) F. Pollaczek, loc. cit.; T. Morishima, Jap. J. Math. vol. 10 (1933); T. Morishima, Jap.
J. Math. vol. 11 (1935) p. 238.
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and a,;=r/j (mod 1), r being a primitive root of l. In particular, if the second
case holds, among the integers p; defined by the ideals p; of the classes N in (17)
there exists one and only one integer which is not primary and conversely; and
also in this case the unit v;, where 1= (1/2)ind(r/7), is a singular primary unit
having the property stated in Lemma 2.

Now by a result in a previous paper of the writer’s we have the following
lemma.

LEmMMA 5(*?). If I is an odd prime and (1) is satisfied in integers in k({)
prime to 1 —{, then it is impossible that for all values

— t = a/b, b/a, a/c, ¢/a, b/c, ¢/b,
Ja() = 0 (mod ),
wheren=3,5,17,9, 11, 13, the other symbols being defined as in Theorem 1.
From Lemma 1 and Lemma 5 we obtain the following lemma.

LEMMA 6. If | is an odd prime and (1) is possible in integers in k({)
prime to 1—¢, then, for at least one of m=2, 3, - - -, l—1, at least one

of [log{ (a+1mB)(a+B8)=1} ™, [log { (B+¢™y) (B+¢v) -1} ]™, [log { (v +ime)
S(v+ta) =1} ™, say [log {(a4¢m8) (a+¢B)-1} |™, is not divisible by 1, where
n=3,5,7,9, 11, 13.

Now forn=3,5,7,9, 11, 13 if in k() none of ideal classes N in (16) is such
that

N, =1, n=71 (mod 1),

or if all integers p; defined by the ideals p; of the classes N in (16) are pri-
mary, then we have

{(a + tmB)(a + ¢B) 1} @) = g,

where ¢ is the factor of the class number % of £(¢) such thatk=Ilrq, (!, ¢)=1,0
is a primary number or 1, w is an integer in k({) and f(s) is the symbolic power

(18) (== =1 (s—r/(s— 1),

s standing for the substitution ({:{"), » being a primitive root of /. From this
we obtain

() [log {(a + £B)(a + 8)-1} ] = 0 (mod 1),
whence, using (18), we have
[log {(a + ¢m8)(a + 8)1}]™ = 0 (mod 1)
which is contrary to Lemma 6.

() T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246.
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From this result and Lemma 4 we have the following theorem.
THEOREM 2. If | is an odd prime and
at+ B4+ v=0

s satisfied in integers a, B3, v in k({) prime to 1 —¢, then for each n=3, 5,17, 9,
11, 13 there exists at least one class N, in k() such that

8—cyp,

(19) N, =1 ¢ca=r (modl),

and in each case n=3, 5, 7,9, 11, 13 one and only one of the integers p, defined
by the ideals p,, of the classes N, in (19) is not primary and the unit n; is primary,
where 1= (1—n)/2 and 1, is the unit having the property stated in Lemma 4, the
other symbols being defined as above.

Now if (1) is satisfied in integers in k({) prime to 1—{ and for all of
n=1—2,1—4, - --,1=-2[(1—1)/4]

fa(t) = 0 (mod 1),

where [(/—1)/4] is the greatest integer in (/—1)/4, the other symbols being
defined as in Theorem A, then we have

J1-2n(8) f2n41(f) = O (mod /)
for n=1,2, ..., (l—3)/2. We also have easily

fil)) = Zr’-‘t' = Z) tr = 0 (mod I).

r=1

Hence we obtain

(—3)/2 (—1/2 I-1 -1

> frean(®)fanir(®) + 2fot) Z =, Y3yl = 0 (mod 1),

n=1 n=0 s=1 r=1
whence
fl+l —_ sH—l l + l -1 l + 1 -1
re 4+ Dol 4 —— 3yl = 0 (mod 1),
r,8 ’2 - 32 2 r=1 2 r=1
where _,, indicates summation over all the values r=1, 2, - - ., 1—1,
s=1,2, -..,1—1 except the values which satisfy

r? = s? (mod I).

From this relation we obtain

-1 -1

ZZt't'+———2—Et"+—————(l— 1)¢ = 0 (mod I);

=1 gml ra=1
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if t=—1 (mod [), we can take {=2 (mod /) instead of {=—1 (mod /) since
a+b+c¢=0 (mod !), whence for />3

t =0 (mod I),
which is contrary to the assumption. Hence we have the following:

THEOREM 3. If 1> 3 is prime and (1) is satisfied in integers in k() prime
to 1—¢, then for at least one of n=1—2, 1—4, - - -, 1—2[(1—1)/4]

fa(®) # 0 (mod 1),
where the symbols are defined as in Theorem A and t# —1 (mod I).

From Lemma 1 and Theorem 3 we obtain

(20) [log {(a + ¢™B) (e + ¢B)"1} ] % 0 (mod 1)
for at least one of n=1—2,1—4, - - -, [—2[(I—1)/4], where m is one of 2,
3, ---,1—-1.

Hence by a demonstration which is analogous to that of Theorem 2 we
have, using (20), the following theorem.

THEOREM 4. If 1> 3 is a prime and (1) is possible in integers in k() prime to

1—¢, then for at least one of n=1—2,1—4, - - -, 1—2[(1—1)/4] there exists a
class N, in k() such that
No™=1 c¢.=r (modl)

and the integer p,, defined by the ideal p,, of N, is not primary, and the unit n—ny2
is primary, where the symbols are defined as in Theorem 2.

Now by Theorem 2 and Theorem 4 for at least seven values of n the
integer p, defined by the ideal p, of the class NV, in (16) is not primary, since
we may assume(!) that I—2[(I—1)/4]>13, that is, />23. Hence, if among
the elements of a normal basis of the irregular class group of k({) there
exist e; classes NV defined as in (16) and e, classes Q defined as in (15), then
by Lemma 4

ey —e =1,
whence we have the following theorem.

THEOREM 5. Let the elements of a normal basis of the irregular class group
of the cyclotomic field k({) be

Ny Nsy -+, N,
Qu Q2 -+, Qe
where the N's are defined as in (16) and the Q's are defined as in (15). If e, —e,
(*%) T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246, Theorem 4.
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<17, then
B+ yt=0
s impossible in integers a, B, v in k() prime to 1 —¢, | being an odd prime.

4. Bernoulli numbers. Assume that the B’s are the Bernoulli numbers
(Bi1=1/6, B,=1/30, etc.), and !/ is an odd prime and none of the first half
in the set By, By, - - -, Bu_sy2 is divisible by I, that is,

(21) B, #0,By#0,:--,B,# 0 (mod ),

where s=[(I—1)/4]. If (1) is satisfied in integers belonging to the cyclotomic
field k(¢) prime to 1 —{, then we obtain from (2) and (21)

fie@® =0, fia(®) =0, - -+, fi2s() = 0 (mod 1),

where s=[(l—1)/4]. This is contrary to Theorem 3. Hence we have the fol-
lowing theorem.

THEOREM 6. If I is an odd prime and none of the first half in the set of the
Bernoulli numbers By, By, - - -, Bu_s2 ts divisible by 1, that is,

BI#O,Bgﬁo,"°,B,#O(m0dl),
where s=[(1—1)/4], then
a4+ +=0

is never satisfied in integers o, B, v belonging to the cyclotomic field k(¢) prime
to 1 —¢, where { is a primitive lth root of unity.

From this theorem we easily obtain the following:
THEOREM 6'. If I 1s an odd prime and the equation
al+ B +4t=0

is satisfied by integers in k() prime to 1—{, then at least one of the Bernoull
numbers in the set

BlyB2y"'1B:

is divisible by I, where s 1s (I—1)/4 or (1—3)/4 according as l=1 (mod 4) or
1=3 (mod 4), the other symbols being defined as in Theorem 6.

Now by a result in a previous paper of the writer’s we have the following
lemma.

LEMMA 7(%). If the equation (1) is solvable for a, B, v integers in the cyclo-
tomic field k(¢) prime to 1 —¢, then

(14) T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246.
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B—2a-1y72 = 0 (mod /)
forn=1,2, 3, 4,5, 6, where the symbols are defined as in Theorem 6.

Hence from Theorem 6’ and Lemma 7 we obtain, since we may assume(14)
that /> 23, the following theorem.

THEOREM 7. If the equation (1) is solvable for a, B, vy integers in the cyclotomic
field k() prime to 1 —, then at least seven of the Bernoulli numbers in the set

By B, - -+, Ba-s)2
are divisible by 1.

5. The first factor of the cyclotomic class number. Let % be the class
number of the cyclotomic field k(¢) defined by a primitive /th root of unity,
! being an odd prime.

It is known that & =ik, where &, is called the first factor of the class num-
ber and 4. is called the second factor of the class number and the latter is
equal to the class number of the real subfield k(¢+¢—1) of k({) of degree
(l-1)/2.

In a previous paper(*) the writer proved that if the equation a!43!'+v'=0
is satisfied in integers «, 8, ¥ belonging to the real subfield k(¢ +4¢1) of k(})
prime to 1—¢, where ! is an odd prime, then the first factor &; of the class
number of k() is divisible by /!2. In the present section we shall extend this
result and prove that if (1) is possible in integers in the field k({+{~!) prime
to 1—¢, then

k1 = 0 (mod 1'3).

Now from a result in a previous paper of the writer's we obtain the fol-
lowing theorem.

THEOREM C(1). If I is an odd prime and the equation (1) is satisfied in inte-
gers a, 3, vy belonging to the field k({+¢Y) prime to 1 —¢, then

l
Em = NMm
(m=(—23/21-5/20="7/20-9)/2 1—11)/2, (I — 13)/2)
and
B; = 0 (mod 12),
i=t_2’;i+_l, Tgl;n=2,3,4,5,6,7-
where

() T. Morishima, Jap. J. Math. vol. 11 (1935) p. 251, Theorem 6.
(%) T. Morishima, Jap. J. Math. vol, 11 (1935) p. 251, Theorem 5.
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L, = @ (symbolic power),
_ ((1 — ) - s—r))m

1-01-
(1—3)/2
(S) Z r"‘z"""’s‘
T

7 1s a primative root of I and s is the substitution ($:¢7).

By Vandiver's result(!?) we also have
—_— 1 -1

Sar= }:iarc,.( )zH

‘ a=1 s=1

(22)

where
de = — a/l (mod %),
0=da<nmn(nl) =1,
whence for r = (I —2m)lc+1, ¢>0,
— 11
dar= rZ d.a™! (mod 12).

l a=1 Qm]

On the other hand it is known that
1 1
(23) — E a" = b, (mod 1?),

where b= —1/2, by,=(—1)"1B, (Bernoulli numbers), bs1=0, and I>3.
Hence

nr— 1 Lol
= Y dsam! (mod 7).
r aml
For ¢=1 and 13, this yields
(I—2m)l+1 __ 1 -1
i — ba—omyr = E d.at—2™! (mod [2),
(I—2mi+1 :
(24) it g - )
——————— bu_amita = ) dea®?™ (mod 12),
(—2mps 1 W0 Z_:l (mod )
whence
nl—2m)i+1 _ ; n—2mt41 _ lb (mod )
PSEEEE— —om = ——— homt? m .
G—2mi+1 T G amype g N

(*") H. S. Vandiver, Ann. of Math. (2) vol. 18, p. 112, (7a).
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From this relation and Theorem C we have for m=2, 3,4, 5,6, 7
(25) b(l—2m)l“+l =0 (mod 12).
We also have from (22) and (23)

nl—2m+l — 1 -1
— b1 = d.at?™ (mod 1).
I—2m+1 ,z_i (mod 1)

From this relation and (24) we obtain

nl—2m+l — 1 n(l—?m)ll3+l — 1
l——m bl—2m+l = m—)ll_:’:_]: b(l—zm)l"+1 (mOd l))
which gives, using Theorem 6’,
(26) ba—amyt3s1 = 0 (mod 1),
zhen)e/z <l-2m+1=2[(I—1)/4], [(1—1)/4] being the greatest integer in
—1)/4.

From Vandiver’s result(!8) concerning the first factor &, of ‘the class num-
ber of k() we also have

lII btl"+l

(27) hl = W (mod 113),

wheres=1,3, - - -, 1-2.
Hence we obtain from (25), (26), and (27)

hy = 0 (mod 113),
whence we have the following theorem.
THEOREM 8. If I is an odd prime and
at+ B+ =0

1s possible in integers a, B, v in the real subfield k({+$1) of k() prime to 1 —¢,
then the first factor of the class number of k({) is divisible by 1'3.

Toxvo COLLEGE OF SCIENCE,
Tokyo, JAPAN.

(*8) H. S. Vandiver, Bull, Amer, Math. Soc. vol. 25 (1918) p. 460, (8).



