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(THIRTEENTH PAPER)

BY

TARO MORISHIMA

1. Introduction. In the present paper we shall investigate Case I of

Fermat's last theorem.

Kummer(I) showed that if / is an odd prime and xl-\-yl-{-zl = Q is satisfied

in rational integers prime to each other and to I, then

rd¡-2» log (x + evy)l

where Bi = l/6, 2?2 = l/30, and so on, are the numbers of Bernoulli, and

« = 1, 2, 3, • • • , il — 3)/2. Mirimanoff(2) proved that these criteria may be

replaced by

Bnfi-tnO) s 0 (mod I), « = 1, 2, 3, •••,(/ - 3)/2,

where

- / = x/y, y/x, x/z, z/x, y/z, z/y,

and

Ut) = £ r-*T.

He also derived the criteria

f,-nit)fnit) m 0 (mod I),

/w(i) m 0 (mod I), n = 2, 3, •■-,(/ - l)/2.

The writer(3) extended the above results and proved the following

theorems:

Theorem A(3). If I is an odd prime and

(1) a1 + ßl + y1 = 0

is satisfied in integers a, ß, y belonging to the eye!otomic field £(f) prime to 1 — f,

where f is a primitive Ith root of unity, f = e2WiI, then we have
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(') E. Kummer, Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin

(1857).
(2) D. Mirimanoff, Journal für die Mathematik vol. 128 (1905) pp. 45-68.
(3) T. Morishima, Jap. J.Math, vol. 11 (1935) pp. 241-252, Theorem 3.
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(2) ft„/,-n« - 0 (mod 0,

for « = 1,2, 3, •••,/ — 2 and

(3) — ¿ = a/ft, ft/a, a/c, c/a, ft/c, c/b (mod /),

w/zere ft0= 1, ii= —1/2, ft,„ = ( —l)n-1i?n, ft,„+i = 0, and a, b, c are rational inte-

gers and

a = a, ß = ft, 7 = c (mod 1 — f).

Theorem B(4). If (1) ¿s satisfied in integers in fe(f) prime to 1 — f, ¿Aew we

f,-n(t)fn(t)   «  0  (mod 0

/or « = 1, 2, • ■ • , /—1, ¿Ae o/Aer symbols being defined as in Theorem A.

Theorem B is equivalent to Theorem A, that is, Theorem B follows from

(2) and conversely(6).

In the following §§4 and 5 we shall find results which are obtained from

the above theorems.

2. Extension of Vandiver's theorem(6). Let / be an odd prime and let

or = a(f) be an integer or fraction in the cyclotomic field k(Ç) prime to 1 — f, f

being a primitive Ith root of unity. For brevity set

HZ» log a(e*)-\ rd-«(e')"|
[log «]<»>=- ,     [„]<»>=—-

L       dvn       J ,_o L   dv"   J v=o

Set also ß/a = 5, where a, ß are integers in k(Ç) prime to 1 — f, then

(4) [log (a + fß)Ym) =  [log «]<"» + [log (1 + fs5)](m)

and

r   (f*5V  "1 (m~1)
log (1 + fl) <-» - -^4r

L i + r« J
r ¡-i -i (».-D      r (f.5)i  -| (*-»

L r-o r+1 J L i + rss J

- x (-i)- -^ [o-v+lr - [iog (i + t>0)r0io

(mod /),

(4) T. Morishima, Ioc. cit. p. 252. For k = \, Theorem 7 reduces to Theorem B.

(6) D. Mirimanoff, loc. cit.

(«) H. S. Vandiver, Proc. Nat. Acad. Sei. U.S.A. vol. 11 (1925) pp. 292-298.
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where 5 = 1,2, •• • ,/-l; 2gmgi-2;

d(e"S(e'))'+l
((f«5)H-i)' . J-!_^_ (r = 0, 1, 2, ■•-,/- 1),

dv

h =  [«(«')].-o = 5(1),

and a+(3 is prime to 1—f. Hence

[log (1 + $■•«)]<»>-¿ (-1)' -— [(fí)«+i](-)
1 + S0 r_0 r + 1

1 i-1    (_l)r    ™
(5) m-£ ---ICm,„[f"+1"]'-»)[ír+1](")

1 + So r=o   r +  1 »1=0

=   Z o«,™»""" (mod 0,
n.-0

where

1 '-1
«m,»   =-C„,,E (~l)r(r +   l)m-„-l[6r+l](M (»   =   1,   2,   •   •   •   ,  »)

1   +  5o r-0

and

-1      '
Om.O   =   — Z »""^(-«o)'

(6) ' + *' r=1

= ---/»(-in) (mod /).
1 + So

Now, using (4) and (5), we have

[log {(a + f|8)(a + f/3)'-1} ]<»> =-  [log (a + f|S)]<»> -  [log (a + f/J)]<»>

-  [log (1 + f•«)]<»' -  [loga + rS)]'"0
m

=.   Z (sm"n - ^««.n (mod /),
n-»0

whence, if

(7) [log {(a + pß)(a + f/3)«-»} ]<-> =. 0 (mod i)

for 5 = 2, 3, ■ • • , I— 1, then

m-l

£ (*—» - l)am.n * 0 (mod 0 (i = 2, 3, •■•,/- 1),
n=0

where 2¿má!-2. Hence we obtain

(8) am,n at 0 (mod /)
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for « = 0, 1, ■ ■ ■ , m — 1, since the determinant

2-1 22 - 1       • • •       2m - 1

3-1 32 - 1       • • •       3"1 - 1

(m+l)-l    (m+ l)2 - 1 ■ • • (m+ l)m - 1

From (6), (7), and (8) we have the following lemma:

f¿ 0 (mod I).

Lemma 1. If I is an odd prime and, for s = 2,

integers a, ß in ¿(f) prime to 1—f, then we have

1—1, (7) is possible in

where

/„(-«„) m 0 (modi),

0(1)
èo   =

«(1)

a m a(l),        ß m ß(l) (mod 1 - f),

a + ß
l + 5o = fé 0 (mod 1 - f),

and a(l), ß(l) are rational integers.

We now consider the relation

a1 + ßl + y' = 0,

where I is an odd prime and a, ß, y are integers in k(Ç) prime to 1—f. From

this relation we obtain

which gives

II (« + fß) = - y1,

(a + f ß) = ba. (s = 0, 1, 2, I- 1),

where b is the greatest common ideal divisor of a, ß and (to, cti, • • • , a¡_i

are ideals in k(Ç). Hence we have

(9) (a + ?ß)(a + f/3)'"1 = b'a!ai('"I) (i = 1, 2, •••,/- 1).

We now employ the law of reciprocity(7) between two integers w^_1, (f^1 in

k(Ç), where

(') H. Hasse, Jber. Deutschen Math. Verein, vol. 6 (1930) p. 110.



1952] ON FERMAT'S LAST THEOREM 71

«.= («+ f*/3)(<* + f/3)'"1,

6r = e(r),

and the principal ideal (dr) is the Zth power of an ideal in &(f) which is prime

to «„ and 1— f. Then we may write, using (9),

-©er-«
where

Hence we have

i-i

L = X (-l)V-"[log «,]<»> [log 0(f) ]<'-»> = 0 (mod /)   '
n=2

for r = 1, 2, • ■ •,/ — 3, s= 1, 2, • • ■ , l—l, whence

(11) [log «,]<»> [log 0(f)]»-») ■ 0 (mod /)

(n = 2, 3, • • • ,1- 2; s = 1, 2, • • ■ ,/- 1),

since the determinant \rl~n\ is prime to I. Now, if

[log 0(f) ](«-») sO(modi),

then we take

(12) fn(t) [log 0(f) ]('-> =0 (mod/)

instead of

[log «.]<»> [log 0(f) ]<«-») = 0 (mod I),

where

< = - ft/a,

a sí a,       j3 = ft (mod 1 — f )

and a, b are rational integers. If

[log 0(f) ]«-»> ai 0 (mod/),

then we obtain from (11)

[log «,]<»> = 0 (mod I) (s = 1, 2, •■•,/- 1)

which gives, using Lemma 1 and (10),

fn(t) m 0 (mod I),
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whence

(13) /n(O[log0(r)]<¡-»> = O(modO,

where

t = - b/a,

a = a,        ß m b (mod 1 — J")

and a, b are rational integers.

In the same way (12) and (13) are satisfied by

— / = a/b, a/c, c/a, b/c, c/b,

where

a = a,       ß = b,       7 = c (mod 1 — f)

and a, b, c are rational integers.

From the relation

a1 + ßl + y1 = 0

we also obtain

a' + b' + cl = 0 (mod (1 - t)1),

whence

a1 + bl + cl = 0 (mod Z2),

a + b + c = 0 (mod /).

Hence

(a + b)1 = - cl = a1 + bl (mod P)

which gives

(1 - *)' ■ 1 - t1 (mod-/2),

where —t — a/b, b/a. From this relation we have easily

!-l

(14) £ rl-Hr m 0 (mod /).

In the same way (14) is satisfied by —t = a/c, c/a, b/c, c/b.

Hence from (12), (13), and (14) we have

Theorem 1. If I is an odd prime and

a1 + ßl + y1 = 0

is satisfied in integers a, ß, y in the cyclotomic field k(Ç) prime to 1—f and

6(Çr) is an integer which is the Ith power of an ideal in k(Ç) prime to a, ß, y,
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and 1—f, where r = 1, 2, • • • , / — 3, then we have

fn(t) [log 0(f)]»-» ■ 0 (mod I) (n = 2, 3, ••-,/- 1)

/or —t = a/b, b/a, a/c, c/a, b/c, c/b, where

MO = Ë r-^.
r-0

rdm log ô(e')1
[log 0(f)]<•»> =-f-^        ,

L     <fom     J„_o

a = a,        ß = b,        y = c (mod 1 — f )

awo* a, b, c are rational integers.

The above demonstration of Theorem 1 is analogous to that of Theorem

A, and also, using the above method, we can obtain Theorem A by taking the

unit

/(i - na - roy»
V(i - mi - r1)/

instead of 0(f), where r is a primitive root of /. In particular, if a, ß, y are

rational integers x, y, z respectively, Theorem 1 gives Vandiver's theorem(8).

3. Irregular ideal classes in the cyclotomic field. Let / be an odd prime

and let the number of ideal classes in the cyclotomic field ¿(f) be h = lTq with

(i,j)-l.
Consider the group of classes of all the ideals in the field of the form a"

where a is an ideal in ¿(f). This gives a group of order lT and is called the ir-

regular class group of ¿(f).

Pollaczek(9) gave the following results:

Lemma 2(9). There exists in ¿(f) a system of fundamental units r\i which have

the properly

nT* - é, i = l, 2, •••,(/ - 3)/2,

where £¿ is a unit in ¿(f) and s stands for the substitution (f :fr), r being a primi-

tive root of I.

Lemma 3(10). In ¿(f) we may select a basis, which we shall call a normal

basis, for the irregular class group

C\, C2, • • • , Ct

such that

(8) H. S. Vandiver, Proc. Nat. Acad. Sei. U.S.A. vol. 11 (1925) pp. 292-298.
(9) F. Pollaczek, Math. Zeit. vol. 21 (1924).
(">) F. Pollaczek, loc. cit.; T. Morishima, Jap. J. Math. vol. 10 (1933) p. 105.
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O;       =1, l =  1, ¿, • • ■  , t,

where the c's are positive rational integers, s being the substitution (f :fr).

We now designate by

(15) Qi, O,, • • •

the C's mentioned in Lemma 3 such that the corresponding c's are quadratic

residues, modulo /, and by

(16) -Vi, Ni,---

the C's mentioned in Lemma 3 in which the c's are quadratic nonresidues.

We also designate by

Pli  P2,  •   ■   •

the ideals of classes N in (16) such that

i"«' ,-H l"'

Pi    = (Pi),        Pi      =<«-•.■, i = 1, 2, • ■ • ,

where c, = r(2,+ 1)'"!'"1, lmi is the order of p.andp,-, a>i are integers in ¿(f), and by

Hii q,, • • ■

the ideals of classes Q in (15) such that

|N _ _j-ëi i"<
q¿    = (pi)i        î>i      "of  i » = L 2, • • • ,

where c¿ = r(í_1_2<)í"i_1, /ni is the order of q,-, and p¿, ¿o¿ are integers in ¿(f).

The integer p¿ satisfying the above conditions we shall call the integer defined

by the ideal pi.

With this notation we have the following lemma.

Lemma 4(n). If among the elements of a normal basis of the irregular class

group of ¿(f) there exists for a certain quadratic non-residue j exactly z¡ classes

(17) Nuv NUi, - ■ ■

such that

n:t = i

and bUi=j (mod /), then there are in the same class group z¡ or z}— 1 basis classes

where

Ä a—av,

_ Qv<    = i

(u) F. Pollaczek, !oc. cit.; T. Morishima, Jap. J. Math. vol. 10 (1933); T. Morishima, Jap.

J. Math. vol. 11 (1935) p. 238.
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and aVi = r/f (mod /), r being a primitive root of I. In particular, if the second

case holds, among the integers pi defined by the ideals p¿ of the classes N in (17)

there exists one and only one integer which is not primary and conversely; and

also in this case the unit r¡¡, where i = (l/2)ind(r/;), is a singular primary unit

having the property stated in Lemma 2.

Now by a result in a previous paper of the writer's we have the following

lemma.

Lemma 5(12). // / is an odd prime and (1) is satisfied in integers in ¿(f)

prime to 1— f, then it is impossible that for all values

— t = a/b, b/a, a/c, c/a, b/c, c/b,

MO = 0 (modi),

where w = 3, 5, 7, 9, 11, 13, the other symbols being defined as in Theorem 1.

From Lemma 1 and Lemma 5 we obtain the following lemma.

Lemma 6. // / is an odd prime and (1) is possible in integers in ¿(f)

prime to 1— f, then, for at least one of m = 2, 3, • • • , I — 1, at least one

oflloglia+^^ia+m1-1}]^, [log{G3+f",7)(/3+f7)HK [log {(Y+fa)
• (Y+fa)'-1} ](n). say [log {(a+C^ia + Cß)'-1} ]<•>, is not divisible by I, where

« = 3, 5, 7, 9, 11, 13.

Now for « = 3, 5, 7, 9, 11, 13 if in ¿(f) none of ideal classes iVin (16) is such

that
i—cn n

N„     = 1,        cn — r  (mod I),

or if all integers p,- defined by the ideals p,- of the classes N in (16) are pri-

mary, then we have

{(a+nSXa + fjS)*-1 }«'<•> = 0co!,

where q is the factor of the class number h of k(f ) such that h = lTq, (I, q) = 1, 6

is a primary number or 1, to is an integer in ¿(f) and fis) is the symbolic power

(18) (5 - r)(i - r*)is - r3) ■ ■ ■ is - r'-*)/(s - r»),

5 standing for the substitution (f :fr), r being a primitive root of I. From this

we obtain

/(f) [log {(a + i:mß)(a + f/3)'-1} ]C-) aa Ö (mod /),

whence, using (18), we have

[log { (a + Cmß)(a + f/3)'-1} }<») m 0 (mod /)

which is contrary to Lemma 6.

C2) T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246.
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From this result and Lemma 4 we have the following theorem.

Theorem 2. If I is an odd prime and

a1 + ßl + y1 = 0

is satisfied in integers a, ß, y in ¿(f) prime to 1 —f, then for each n = 3, 5, 7, 9,

11, 13 there exists at least one class Nn in ¿(f) such that

(19) Nn"" =1,        c„ = r" (mod /),

and in each case « = 3, 5, 7, 9, 11, 13 one and only one of the integers pn defined

by the ideals pn of the classes Nn in (19) is not primary and the unit r¡i is primary,

where i= (l — n)/2 and r\i is the unit having the property stated in Lemma 4, the

other symbols being defined as above.

Now if (1) is satisfied in integers in ¿(f) prime to 1—f and for all of

n = l-2, l-4t, • • • ,/-2[(/-l)/4]

/„(/) m 0 (mod Q,

where [(/ —1)/4] is the greatest integer in (/— l)/4, the other symbols being

defined as in Theorem A, then we have

fi-in(t)fin+i(t) = 0 (mod 0

for « = 1, 2, ■ • • , (/ —3)/2. We also have easily

i-i ¡-i
fi(t) = X **-lr = X tr » 0 (mod I).

r=0 r=l

Hence we obtain

(1-3)12 !-l (¡-D/2       1—1   ¡-1

S/i-!.(I)W0 + 2/i(<)E',s    X      X X r*-*-V"*V m 0 (mod I),
n=l r=l K-0 a=»l   r=l

whence

rl+l _ sl+l ¡J.JH / -j_  I   ¡-1

X -t'f H-X r'~lt2' + - X r'-Hl = 0 (mod /),
r.s     r2 — s2 2     r=i 2     r=¡

where X>.» indicates summation over all the values r = l, 2, •■•,/— 1,

5 = 1, 2, •••,/ —1 except the values which satisfy

r2 m s2 (mod /).

From this relation we obtain

i-i ¡-i i _ i i-i I — 1
X X <r's + —r- X '2r + —— (l - l)i » 0 (mod 0;
r— 1  «=1 2 r_l 2
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if ¿= — 1 (mod I), we can take t = 2 (mod I) instead of /= — 1 (mod /) since

a-\-b-\-c = 0 (mod /), whence for ¿>3

t = 0 (mod/),

which is contrary to the assumption. Hence we have the following:

Theorem 3. If l>3 is prime and (1) is satisfied in integers in ¿(f) prime

to 1—f, then for at least one of n = 1 — 2, I — 4, • • • , / — 2 [(I—1)/4]

/„(/) fá 0 (mod /),

where the symbols are defined as in Theorem A and tfé — í (mod /).

From Lemma 1 and Theorem 3 we obtain

(20) [log {(a + r-/3)(« + m1-1} Yn) ^ 0 (mod /)

for at least one of « = / — 2, / — 4, • • • , / — 2[(l—1)/4], where m is one of 2,

3, • • -,/-l.

Hence by a demonstration which is analogous to that of Theorem 2 we

have, using (20), the following theorem.

Theorem 4. If l>3 is a prime and (1) is possible in integers in ¿(f) prime to

1—f, then for at least one of « = / —2, I— 4, ■ • • , / —2[(/—1)/4] there exists a

class Nn in ¿(f) such that

Nn  * = 1,        cn = r   (mod /)

and the integer pn defined by the ideal p„ of Nn is not primary, and the unit ?7(j_„)/2

is primary, where the symbols are defined as in Theorem 2.

Now by Theorem 2 and Theorem 4 for at least seven values of n the

integer pn defined by the ideal p„ of the class Nn in (16) is not primary, since

we may assume(13) that / — 2[(Z—1)/4]> 13, that is, l>23. Hence, if among

the elements of a normal basis of the irregular class group of ¿(f) there

exist «i classes N defined as in (16) and e2 classes Q defined as in (15), then

by Lemma 4

«i - «2 è 7,

whence we have the following theorem.

Theorem 5. Let the elements of a normal basis of the irregular class group

of the cyclotomic field ¿(f) be

Nu N2, ■ ■ ■ , Nev

Qu   ft,.-", Qe„

where the N's are defined as in (16) and the Q's are defined as in (15). If ex — e2

(") T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246, Theorem 4.
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<7, then

a1 + ßl + y1 = 0

is impossible in integers a, ß, y in ¿(f) prime to 1 — f, / being an odd prime.

4. Bernoulli numbers. Assume that the B's are the Bernoulli numbers

(2?i = l/6, .B2 = l/30, etc.), and / is an odd prime and none of the first half

in the set B\, B2, ■ ■ ■ , .B(¡-3)/, is divisible by /, that is,

(21) Bi jé 0, Bi jé 0, ■ • • , Bs jé 0 (mod I),

where 5= [(/—1)/4]. If (1) is satisfied in integers belonging to the cyclotomic

field ¿(f) prime to 1— f, then we obtain from (2) and (21)

/,_,(/) * 0, /;_4(0 m 0, • • • , /,_„(/) = 0 (mod /),

where s= [(/—1)/4]. This is contrary to Theorem 3. Hence we have the fol-

lowing theorem.

Theorem 6. If I is an odd prime and none of the first half in the set of the

Bernoulli numbers B\, B2, ■ ■ ■ , Ba-z)/2 is divisible by I, that is,

Bi jé 0, B2 jé 0, • • • , Bs jé 0 (mod /),

where s= [(/ —1)/4], then

a1 + ßl + y' = 0

is never satisfied in integers a, ß, y belonging to the cyclotomic field ¿(f) prime

to 1 — f, where f is a primitive Ith root of unity.

From this theorem we easily obtain the following:

Theorem 6'. If I is an odd prime and the equation

al   _j-   ßl   _|_   yl    =    0

is satisfied by integers in ¿(f) prime to 1 — f, then at least one of the Bernoulli

numbers in the set

Bi, B2, • • • , B,

is divisible by I, where s is (I— l)/4 or (I — 3)/4 according as 1=1 (mod 4) or

1 = 3 (mod 4), the other symbols being defined as in Theorem 6.

Now by a result in a previous paper of the writer's we have the following

lemma.

Lemma 7(14). If the equation (1) is solvable for a, ß, y integers in the cyclo-

tomic field ¿(f) prime to 1 — f, then

(») T. Morishima, Jap. J. Math. vol. 11 (1935) p. 246.



1952] ON FERMAT'S LAST THEOREM 79

#(i-i»-i)/3 = 0 (mod /)

for « = 1, 2, 3, 4, 5, 6, where the symbols are defined as in Theorem 6.

Hence from Theorem 6' and Lemma 7 we obtain, since we may assume(14)

that />23, the following theorem.

Theorem 7. If the equation (1) is solvable for a, ß, y integers in the cyclotomic

field ¿(f) prime to 1 — f, then at least seven of the Bernoulli numbers in the set

B\, B2, ■ ■ ■ , B(¡_3)/2

are divisible by I.

5. The first factor of the cyclotomic class number. Let h be the class

number of the cyclotomic field ¿(f) defined by a primitive Ith root of unity,

/ being an odd prime.

It is known that h = hjt2 where hi is called the first factor of the class num-

ber and h2 is called the second factor of the class number and the latter is

equal to the class number of the real subfield ¿(f+ f_1) of ¿(f) of degree

(/-l)/2.
In a previous paper(15) the writer proved that if the equation a'+ß'+y' = 0

is satisfied in integers a, ß, y belonging to the real subfield ¿(f+f-1) of ¿(f)

prime to 1— f, where / is an odd prime, then the first factor hi of the class

number of ¿(f) is divisible by I12. In the present section we shall extend this

result and prove that if (1) is possible in integers in the field ¿(f -r-f-1) prime

to 1—f, then

hi a 0 (mod I13).

Now from a result in a previous paper of the writer's we obtain the fol-

lowing theorem.

Theorem C(16). /// is an odd prime and the equation (1) is satisfied in inte-

gers a, ß, y belonging to the field ¿(f -r-f-1) prime to 1 — f, then

En = rjm

im = (/ - 3)/2, (/ - 5)/2, (/ - 7)/2, (/ - 9)/2, (/ - ll)/2, (/ - 13)/2)

and

Bi = 0 (mod /2),

(/ - 2n)lT + 1
i =-; t = 1; n = 2, 3, 4, 5, 6, 7,

2

where

(15) T. Morishima, Jap. J. Math. vol. 11 (1935) p. 251, Theorem 6.
('«) T. Morishima, Jap. J. Math. vol. 11 (1935) p. 251, Theorem 5.
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EM = 6/(s) (symbolic power),

'(i - na - rr)\1/2_ ({1 ~ r)(1 ~ rr)V

= V (i - f)(i - r1)/  '
(is) n

f(s) =   £  H-2i"-V,

r ¿s a primitive root of I and s is the substitution (f :fr).

By Vandiver's result(17) we also have

nr - 1 £1

(22)
Í-1 l-i      r / ¿  \,

Ia'=  XXa'Cr..(-)/'-\
o^i o-i «=i \ a //

where

¿„ = — a// (mod «),

0 ^ d0 < n, (n, I) = 1,

whence for r= (l — 2m)lc+l, c>0,

nr — 1 i_1 !_1

-X ar = ' X ¿a«r_l (mod I2).
I a=l a=>l

On the other hand it is known that

1   '-•
(23) —J^ar = br (mod I2),

I    a~l

where ii=—1/2, ft2r = ( — l)'~lBr (Bernoulli  numbers), ft2r+i = 0, and l>3.

Hence

W - 1 t,1
-ir = X ¿«a'-1 (mod l2).

r a-l

For c = l and 13, this yields

n(l-2m)l+l _   j :-i

-—r-rr—; »<w->w.i   - X daa^2^ (mod /2),
(24) a-2-)/+l

M(i-2m)i13+l _  1 !-l

„      „   ,», ,   1 i(;-2m,^+i = X ¿.a««-)'" (mod /2),
(I — 2m)/13 + 1 a-i

whence

n(l-2m)l+l  _   1 n(l-im)ln+l _   2

(/-2„)/+i è"-2m"+I * (/-2W)P+1*"-2™>Î,3+1 (m°d /2)-

(") H. S. Vandiver, Ann. of Math. (2) vol. 18, p. 112, (7a).
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From this relation and Theorem C we have for m = 2, 3, 4, 5, 6, 7

(25) ia-tmPv - 0 (mod P).

We also have from (22) and (23)

nl-2m+l   _   J

/ — 2m + 1 0=i

From this relation and (24) we obtain

bi-2m+i m ]T daal'2m (mod /).

K(í-2m)¡13+l _   1

£>¡-2m+l   =   —-Z~~^Z-1 ^(I-2m)i13+l  (mod /) ,
/ - 2m + 1 (/ - 2m)/13 + 1

which gives, using Theorem 6',

(26) ba-2m>in+i = 0 (mod /),

where 2^/-2w+l g2[(Z-l)/4],  [(/-l)/4] being the greatest integer in

(J-l)/4.
From Vandiver's result(18) concerning the first factor hx of the class num-

ber of ¿(f) we also have

/IIè«i13+i

(27) ht = —-(mod Z13),
v 2<!-3>/2

where 5 = 1, 3, •••,/ —2.

Hence we obtain from (25), (26), and (27)

hi w 0 (mod I13),

whence we have the following theorem.

Theorem 8. If I is an odd prime and

ocl + ßl + y1 = 0

is possible in integers a, ß, y in the real subfield ¿(f+f_1) of ¿(f) prime to 1 —f,

then the first factor of the class number of ¿(f) is divisible by ln.
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Tokyo, Japan.

(IS) H. S. Vandiver, Bull. Amer. Math. Soc. vol. 25 (1918) p. 460, (8).


