An application of doubly orthogonal functions to a problem of approximation in two regions
HTML articles powered by AMS MathViewer
 by Philip Davis PDF
 Trans. Amer. Math. Soc. 72 (1952), 104137 Request permission
References

S. Bergman, Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen, Math. Ann. vol. 96 (1922) pp. 237271.
 Stefan Bergmann, Zwei Sätze über Funktionen von zwei komplexen Veränderlichen, Math. Ann. 100 (1928), no. 1, 399–410 (German). MR 1512492, DOI 10.1007/BF01448853
 Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439
 S. Bergman and M. Schiffer, Kernel functions in the theory of partial differential equations of elliptic type, Duke Math. J. 15 (1948), 535–566. MR 25662
 O. J. Farrell, On approximation to an analytic function by polynomials, Bull. Amer. Math. Soc. 40 (1934), no. 12, 908–914. MR 1562998, DOI 10.1090/S000299041934060026 E. Goursat, Cours d’analyse, vol. 3, Paris, 1923.
 G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
 E. N. Nilson and J. L. Walsh, Interpolation and approximation by functions analytic and bounded in a given region, Trans. Amer. Math. Soc. 55 (1944), 53–67. MR 9196, DOI 10.1090/S00029947194400091967
 Menahem Schiffer, The kernel function of an orthonormal system, Duke Math. J. 13 (1946), 529–540. MR 19115
 J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587 —, On interpolation and approximation by functions analytic and bounded in a given region, Proc. Nat. Acad. Sci. U.S.A. vol. 24 (1938) pp. 477486.
 J. L. Walsh, Taylor’s series and approximation to analytic functions, Bull. Amer. Math. Soc. 52 (1946), 572–579. MR 17362, DOI 10.1090/S000299041946086152
 J. L. Walsh and E. N. Nilson, On functions analytic in a region: approximation in the sense of least $p$th powers, Trans. Amer. Math. Soc. 65 (1949), 239–258. MR 28956, DOI 10.1090/S00029947194900289564
Additional Information
 © Copyright 1952 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 72 (1952), 104137
 MSC: Primary 30.0X
 DOI: https://doi.org/10.1090/S00029947195200464343
 MathSciNet review: 0046434