A structure theory of Lie triple systems
HTML articles powered by AMS MathViewer
- by William G. Lister
- Trans. Amer. Math. Soc. 72 (1952), 217-242
- DOI: https://doi.org/10.1090/S0002-9947-1952-0045702-9
- PDF | Request permission
References
- Claude Chevalley and R. D. Schafer, The exceptional simple Lie algebras $F_4$ and $E_6$, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 137β141. MR 34378, DOI 10.1073/pnas.36.2.137 N. Gantmacher, Canonical representation of automorphisms of a semi-simple Lie group, Rec. Math. (Mat. Sbornik) N.S. vol. 5 (1939) p. 101.
- G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677β694. MR 7009, DOI 10.2307/2371713
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479β502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105β113. MR 49882, DOI 10.1090/S0002-9939-1951-0049882-5 β, Simple Lie algebras over a field of characteristic 0, Duke Math. J. vol. 4 (1938) p. 694.
- N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509β530. MR 41118, DOI 10.1090/S0002-9947-1951-0041118-9
- Eugene Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math. 73 (1951), 453β474. MR 42399, DOI 10.2307/2372187
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 72 (1952), 217-242
- MSC: Primary 09.0X
- DOI: https://doi.org/10.1090/S0002-9947-1952-0045702-9
- MathSciNet review: 0045702