BANACH SPACES WITH THE EXTENSION PROPERTY

BY

J. L. KELLEY

It is the object of this note to complete a characterization of those Banach spaces B with the Hahn-Banach extension property: each bounded linear function F on a subspace of any Banach space C with values in B has a linear extension F' carrying all of C into B such that $\|F'\| = \|F\|$. It is shown here that:

Theorem. Each such space B is equivalent to the space C_X of continuous real-valued functions on an extremally disconnected compact Hausdorff space X, C_X having the usual supremum norm.

Recently, in these Transactions, Nachbin [N] and, independently, Goodner [G] have shown that if B has the extension property and if its unit sphere has an extreme point, then B is equivalent to a function space of this sort; both authors have also proved that such a function space has the extension property. The above theorem simply omits the extreme point hypothesis, and so establishes the equivalence.

My original proof, of which the proof given here is a distillate, depends on an idea of Jerison [J]. Briefly, letting X be the weak* closure of the set of extreme points of the unit sphere of the adjoint B^*, B can be shown equivalent to the space of all weak* continuous real functions f on X such that $f(x) = -f(-x)$, and then properties of X are deduced which imply the theorem. The same idea occurs implicitly in the proof below.

Note. Goodner asks [G, p. 107] if every Banach space having the extension property is equivalent to the conjugate of an abstract (L)-space. It is known (this is not my contribution) that the Birkhoff-Ulam example ([B, p. 186] or [HT, p. 490]) answers this question in the negative, the pertinent Banach space being the bounded Borel functions on $[0, 1]$ modulo those functions vanishing except on a set of the first category, with $\|f\| = \inf \{K : |f(x)| \leq K \text{ save on a set of first category}\}$.

1. Preliminary definitions and remarks. A point x is an extreme point of a convex subset K of a real linear space if x is not an interior point of any line segment contained in K (i.e., if $x = ty + (1-t)z$, $0 < t < 1$, $y \in K$, and $z \in K$, then $x = y = z$). A set L is a support of K if L is a convex, nonvoid subset of K such that each line segment contained in K which has an interior point in L is contained in L. If x is an extreme point of L and L is a sup-

Presented to the Society, September 6, 1951; received by the editors July 26, 1951.

(?) This work was done under Contract N 7-onr-434, Task Order III, Navy Department, the Office of Naval Research, U.S.A.
If F is a linear function carrying a convex set K into a convex set M and L is a support of M, then $F^{-1}(L) \cap K$ is either void or a support of K.

For each Banach space B the adjoint space is denoted by B^* and the weak* topology for B^* is the topology of pointwise convergence of functionals. Each convex, norm-bounded, weak* closed subset K (convex, weak* compact subset) is, according to the classic theorem of Krein and Milman, the smallest convex weak* closed set which contains all extreme points of K. (See, for example, [K].) If F is a bounded linear function on B to a Banach space C, then F^*, the adjoint function, carries C^* into B^* in a weak* continuous fashion, and in particular, the image of the unit sphere of C^* is weak* compact.

A compact Hausdorff space is extremally disconnected if the closure of each open set is open. If X is a compact Hausdorff space, then C_X is the Banach space of all real-valued continuous functions on X, with the usual supremum norm. For each $x \in X$ there is assigned a functional e_x, by setting $e_x(f) = f(x)$ for $f \in C_X$. This functional e_x is the evaluation at x. It is known (see [AK]) that the set of extreme points of the unit sphere of C_X^* is precisely $E \cup (-E)$, where E is the set of all evaluations. Moreover, if E has the relativized weak* topology, then the function e carrying x into e_x maps X homeomorphically onto E.

2. Proof of the theorem. Let B be a Banach space with the property: if H is a linear isometry of B into a Banach space C, then there is a linear map G of norm one carrying C onto B such that GH is the identity map of B onto itself. Let X be the weak* closure of the set of all extreme points of the unit sphere of B^*. Then X is weak* compact. In what follows, a subset of X is “open” if it is “open in the relativized weak* topology for X,” and the closure \overline{U} of a subset U of X is the weak* closure of U.

Suppose, now, that U and V are open subsets of X such that both $U \cap V$ and $[-(U \cup V)] \cap (U \cup V)$ are void, and $[-(U \cup V)] \cup (U \cup V)$ is dense in X. We construct a space Y, by setting $Y = (\{0\} \times U^c) \cup (\{1\} \times V^c)$, so that Y consists of disjoint copies of U^c and V^c. The set Y is topologized by agreeing that if U_1 is open in U^c and V_1 is open in V^c, then $\{0\} \times U_1$ and $\{1\} \times V_1$ are each open in Y. Let H be the map of B into C_Y defined, for $b \in B$, $u \in U^c$, $v \in V^c$ by: $H(b)((0, u)) = u(b)$, $H(b)((1, v)) = v(b)$. The basic result about this construction is:

Lemma. The map H is a linear isometry of B onto C_Y. Moreover, $U^c \cap V^c$ and $[-(U^c \cup V^c)] \cup (U^c \cup V^c)$ are void, and H^* maps the set of evaluations in C_Y^* weak* homeomorphically onto $U^c \cap V^c$.

Proof. We first verify that H is a linear isometry. The unit sphere S of B^* is weak* compact and, for each $b \in B$, the linear functional b', whose value at $z \in B^*$ is $z(b)$, is weak* continuous, and maps S onto the closed interval
The set of points at which the functional \(b' \) assumes the value \(\|b\| \) is a support of \(S \) and hence contains an extreme point \(x \), which is a member of \(X \). Either \(x \) or \(-x \) belongs to \(U \cap V^c \), and consequently \(\|H(b)\| \geq |x(b)| = \|b\| \). On the other hand, since \(U \cap V^c \) is a subset of the unit sphere of \(B^* \), \(\|H(b)\| \leq \|b\| \), so that \(H \) is an isometry.

Next, a small calculation. Suppose \(e_{(0,u)} \in C^*_x \) is the evaluation at \((0, u)\), and that \(b \in B \). Then \(H^*(e_{(0,u)})(b) \) is, by definition of \(H^* \), \(e_{(0,u)}(H(b)) \), which from the definition of \(e_{(0,u)} \) is \(H(b)((0, u)) \), and using the definition of \(H \) this is \(u(b) \). Consequently, the valuation at \((0, u)\) maps under \(H^* \) onto \(u \), and similarly the evaluation at \((1, v)\) maps onto \(v \).

If \(u \in U \) and \(u \) is an extreme point of the unit sphere \(S \) of \(B^* \), then \(H^{*-1}(u) \) intersects the unit sphere \(T \) of \(C^*_x \) in a set which is a support of \(S \). This support, being weak* compact, consists of a single point or else contains at least two extreme points (the Krein-Milman theorem). Each extreme point of the support is also an extreme point of \(T \). But the extreme points of \(T \) are \(\pm \) evaluations, and since \(u \in V^c \), the only extreme point which can map onto \(u \) under \(H^* \) is \(e_{(0,u)} \), in view of the preceding paragraph. Consequently, \(H^{*-1}(u) \cap T \) consists of the single point \(e_{(0,u)} \) and similarly, if \(v \in V \) and \(v \) is an extreme point of \(S \), then \(H^{*-1}(v) \cap T = \{e_{(1,v)}\} \).

Now let \(G \) be a linear function of norm one carrying \(C_T \) onto \(B \) so that \(GH \) is the identity on \(B \). Then \(G^* \) carries the unit sphere \(S \) of \(B^* \) into the unit sphere \(T \) of \(C^*_x \) and \((GH)^* = H^*G^* \) is the identity on \(B^* \). If \(u \in U \) and \(u \) is an extreme point of \(S \), then necessarily \(G^*(u) = e_{(0,u)} \), in view of the preceding paragraph, and if \(v \in V \) and \(v \) is an extreme point of \(S \), then \(G^*(v) = e_{(1,v)} \). Because such points are dense in \(U \) and in \(V \) the function \(G^* \) carries a dense subset of \(X \) onto a weak* dense subset of \(E \cup (-E) \), where \(E \) is the set of evaluations. Because \(X \) and \(E \cup (-E) \) are weak* compact \(G^* \) carries \(X \) onto \(E \cup (-E) \). Now \(H^*G^* \) is the identity on \(B^* \), and if \(u \in U \) and \(u \) is an extreme point of \(S \), then \(G^*H^*(e_{(0,u)}) = G^*(u) = e_{(0,u)} \), and similarly for \(v \in V \) and \(v \) extreme, so that \(G^*H^* \) is the identity on a dense subset of \(E \cup (-E) \). Consequently \(G^* \) is, on \(X \), a homeomorphism, and \(H^* \) is, on \(E \cup (-E) \), the inverse of this homeomorphism. From the structure of \(E \cup (-E) \) it follows (see preliminary remarks) that \(U \cap V^c \) and \(-\left(U \cap V^c \right) \) are void, and it is also clear that \(H^* \) maps \(E \) homeomorphically onto \(U \cap V^c \).

It remains to show that \(H \) maps \(B \) onto \(C_T \). The image \(G^*(S) \) of the unit sphere \(S \) of \(B^* \) is convex and weak* compact, and each extreme point of the unit sphere \(T \) of \(C^*_x \), as was shown in the preceding paragraph, belongs to \(G^*(S) \). From the Krein-Milman theorem it follows that \(T \subset G^*(S) \), and since \(G^* \) has norm one, \(T = G^*(S) \). Since \(H^*G^* \) is the identity on \(B^* \) and since \(G^* \) maps \(B^* \) onto \(C^*_x \), it follows that \(H^* \) is 1-1. Because \(H^* \) is 1-1 it is true that \(H \) maps \(B \) onto \(C_T \), for otherwise there is a nonzero linear functional on \(C_T \) which vanishes on the range of \(H \) (a closed subspace) and \(H^* \) applied to this functional gives the zero of \(B^* \). The proof of the lemma is then complete.
The theorem is now established as follows. Choose, using Zorn's Lemma, an open subset W of X maximal with respect to the property that $(-W) \cap W$ be void. Then $(-W) \cup W$ is dense in X. Applying the lemma to $U=W$, $V=\text{void set}$, it follows that $(-W^c) \cap (W^c)$ is void, and that W^c is open as well as closed in X. Moreover H is an isometry of B onto C_Y, where Y is homeomorphic to W^c. Proceeding, let U be any open subset of W^c and let $V=W^c \setminus U^c$. Applying the lemma again, we see that $U^c \cap V^c$ is void so that U^c is open and it is proven that W^c is extremally disconnected, which establishes the theorem.

References

Tulane University,
New Orleans, La.