Homomorphisms of Jordan rings of self-adjoint elements
HTML articles powered by AMS MathViewer
- by N. Jacobson and C. E. Rickart
- Trans. Amer. Math. Soc. 72 (1952), 310-322
- DOI: https://doi.org/10.1090/S0002-9947-1952-0046346-5
- PDF | Request permission
References
- F. D. Jacobson and N. Jacobson, Classification and representation of semi-simple Jordan algebras, Trans. Amer. Math. Soc. 65 (1949), 141–169. MR 29367, DOI 10.1090/S0002-9947-1949-0029367-8
- N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300–320. MR 12271, DOI 10.2307/2371731 —, Lectures in abstract algebra, vol. II, forthcoming.
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- Irving Kaplansky, Forms in infinite-dimensional spaces, An. Acad. Brasil. Ci. 22 (1950), 1–17. MR 37285
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- C. E. Rickart, Isomorphic groups of linear transformations. II, Amer. J. Math. 73 (1951), 697–716. MR 45126, DOI 10.2307/2372320
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 72 (1952), 310-322
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9947-1952-0046346-5
- MathSciNet review: 0046346