Diophantine approximation in fields of characteristic $p$
HTML articles powered by AMS MathViewer
- by L. Carlitz
- Trans. Amer. Math. Soc. 72 (1952), 187-208
- DOI: https://doi.org/10.1090/S0002-9947-1952-0048503-0
- PDF | Request permission
References
- E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z. 19 (1924), no. 1, 153–206 (German). MR 1544651, DOI 10.1007/BF01181074 H. Bohr and B. Jessen, One more proof of Kronecker’s theorem, J. London Math. Soc. vol. 7 (1932) pp. 274-275.
- L. Carlitz, Representations of arithmetic functions in $\textrm {GF}[p^n,x]$, Duke Math. J. 14 (1947), 1121–1137. MR 23305, DOI 10.1215/S0012-7094-47-01485-3
- L. Carlitz, The singular series for sums of squares of polynomials, Duke Math. J. 14 (1947), 1105–1120. MR 23304, DOI 10.1215/S0012-7094-47-01484-1
- L. Carlitz, Some applications of a theorem of Chevalley, Duke Math. J. 18 (1951), 811–819. MR 45157, DOI 10.1215/S0012-7094-51-01875-3
- G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation, Acta Math. 37 (1914), no. 1, 155–191. MR 1555098, DOI 10.1007/BF02401833 J. F. Koksma, Diophantische Approximationen, Berlin, 1936.
- Kurt Mahler, An analogue to Minkowski’s geometry of numbers in a field of series, Ann. of Math. (2) 42 (1941), 488–522. MR 4272, DOI 10.2307/1968914
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 72 (1952), 187-208
- MSC: Primary 10.0X
- DOI: https://doi.org/10.1090/S0002-9947-1952-0048503-0
- MathSciNet review: 0048503