Finite Fourier series and equations in finite fields
HTML articles powered by AMS MathViewer
- by Albert Leon Whiteman
- Trans. Amer. Math. Soc. 74 (1953), 78-98
- DOI: https://doi.org/10.1090/S0002-9947-1953-0052453-4
- PDF | Request permission
References
- H. Davenport, Note on linear fractional substitutions with large determinant, Ann. of Math. (2) 41 (1940), 59–62. MR 1771, DOI 10.2307/1968820 H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. vol. 172 (1935) pp. 151-182. L. E. Dickson, Lower limit for the number of sets of solutions of ${x^e} + {y^e} + {z^e} \equiv 0 \pmod p$, J. Reine Angew. Math. vol. 135 (1909) pp. 181-188. —, Congruences involving only $e$th powers, Acta Arithmetics vol. 1 (1935) pp. 161-167.
- L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), no. 3, 363–380. MR 1501791, DOI 10.1090/S0002-9947-1935-1501791-3 G. Eisenstein, Aufgaben und Lehrsätze, J. Reine Angew. Math. vol. 27 (1844) pp. 281-284.
- Olin B. Faircloth, On the number of solutions of some general types of equations in a finite field, Canad. J. Math. 4 (1952), 343–351. MR 47694, DOI 10.4153/cjm-1952-030-0
- Olin B. Faircloth, A summary of new results concerning the solutions of equations in finite fields, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 619–622. MR 43133, DOI 10.1073/pnas.37.9.619
- O. B. Faircloth and H. S. Vandiver, On multiplicative properties of a generalized Jacobi-Cauchy cyclotomic sum, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 260–267. MR 36264, DOI 10.1073/pnas.36.4.260
- O. B. Faircloth and H. S. Vandiver, On certain Diophantine equations in rings and fields, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 52–57. MR 45752, DOI 10.1073/pnas.38.1.52 H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Jber. Deutschen Math. Verein, vol. 35 (1926) pp. 1-55; vol. 36 (1927) pp. 233-311; Erganzungsband 6 (1930).
- L. K. Hua and H. S. Vandiver, On the existence of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 258–263. MR 25487, DOI 10.1073/pnas.34.6.258
- A. Hurwitz, Sur quelques applications géométriques des séries de Fourier, Ann. Sci. École Norm. Sup. (3) 19 (1902), 357–408 (French). MR 1509016 —, Ueber die Kongruenz $a{x^e} + b{y^e} + c{z^e} \equiv 0 \pmod p$, J. Reine Angew. Math. vol. 136 (1909) pp. 272-292 (=Mathematische Werke, vol. II, Basel, 1933, pp. 430-445). E. Landau, Vorlesungen über Zahlentheorie, vol. 1, Leipzig, 1927. V. A. Lebesgue, Demonstration de quelques formules d’un mémoire de M. Jacobi, J. Math. Pures Appl. (1) vol. 19 (1854) pp. 289-300.
- Howard H. Mitchell, On the generalized Jacobi-Kummer cyclotomic function, Trans. Amer. Math. Soc. 17 (1916), no. 2, 165–177. MR 1501034, DOI 10.1090/S0002-9947-1916-1501034-9
- Howard H. Mitchell, On the congruence $cx^\lambda +1\equiv dy^\lambda$ in a Galois field, Ann. of Math. (2) 18 (1917), no. 3, 120–131. MR 1503593, DOI 10.2307/2007117
- L. J. Mordell, The number of solutions of some congruences in two variables, Math. Z. 37 (1933), no. 1, 193–209. MR 1545390, DOI 10.1007/BF01474570
- Hans Rademacher, The Fourier Series and the Functional Equation of the Absolute Modular Invariant J($\tau$), Amer. J. Math. 61 (1939), no. 1, 237–248. MR 1507375, DOI 10.2307/2371403 J. V. Uspensky and M. A. Heaslett, Elementary number theory, New York and London, 1939.
- H. S. Vandiver, Quadratic relations involving the numbers of solutions of certain types of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 681–685. MR 32681, DOI 10.1073/pnas.35.12.681
- H. S. Vandiver, On a generalization of a Jacobi exponential sum associated with cyclotomy, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 144–151. MR 32683, DOI 10.1073/pnas.36.2.144
- André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 29393, DOI 10.1090/S0002-9904-1949-09219-4
- Albert Leon Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math. 74 (1952), 89–99. MR 45758, DOI 10.2307/2372071
Bibliographic Information
- © Copyright 1953 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 74 (1953), 78-98
- MSC: Primary 10.0X
- DOI: https://doi.org/10.1090/S0002-9947-1953-0052453-4
- MathSciNet review: 0052453