Functions representable as differences of subharmonic functions
HTML articles powered by AMS MathViewer
- by Maynard G. Arsove
- Trans. Amer. Math. Soc. 75 (1953), 327-365
- DOI: https://doi.org/10.1090/S0002-9947-1953-0059416-3
- PDF | Request permission
References
- James A. Clarkson and C. Raymond Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), no. 4, 824–854. MR 1501718, DOI 10.1090/S0002-9947-1933-1501718-2
- C. Raymond Adams and James A. Clarkson, Properties of functions $f(x,y)$ of bounded variation, Trans. Amer. Math. Soc. 36 (1934), no. 4, 711–730. MR 1501762, DOI 10.1090/S0002-9947-1934-1501762-6 S. Banach Théorie des opérations linéaires, Warsaw, 1932. M. Brelot Étude des fonctions sousharmoniques au voisinage d’un point, Actualités Scientifiques et Industrielles, vol. 139, 1934, pp. 5-55. —Sur l’allure des fonctions harmoniques et sousharmoniques à la frontière, Mathematische Nachrichten vol. 4 (1950) pp. 248-307. —Sur l’intégration de $\Delta u(M) = \phi (M)$, C. R. Acad. Sci. Paris vol. 201 (1945) pp. 1316-1318.
- Marcel Brelot, Minorantes sous-harmoniques, extrémales et capacités, J. Math. Pures Appl. (9) 24 (1945), 1–32 (French). MR 16186
- M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. (2) 68 (1944), 12–36 (French). MR 12364
- Marcel Brelot, Deux théorèmes généraux sur le potentiel et quelques applications, C. R. Acad. Sci. Paris 226 (1948), 1499–1500 (French). MR 24529
- Henri Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74–106 (French). MR 15622
- Jacques Deny, Sur les infinis d’un potentiel, C. R. Acad. Sci. Paris 224 (1947), 524–525 (French). MR 19176
- Jacques Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107–183 (French). MR 36371, DOI 10.1007/BF02398276
- Griffith C. Evans, Complements of Potential Theory. Part II, Amer. J. Math. 55 (1933), no. 1-4, 29–49. MR 1506942, DOI 10.2307/2371108
- Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458–474. MR 54768, DOI 10.2307/1969730 R. Nevanlinna Eindeutige analytische Funktionen, Berlin, 1936. E. E. Privaloff A generalization of Jensen’s formula, part I, Izvestia Akad. Nauk. vol. 6-7 (1935) pp. 837-847. —Subharmonic functions, Moscow, 1937. T. Radó Subharmonic functions, Berlin, 1937. F. Riesz Sur certains systèmes singuliers d’équations intégrales, Ann. École Norm. vol. 28 (1911) pp. 5-62.
- P. C. Rosenbloom, Mass distributions and their potentials, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 130–138. MR 0057396
- Walter Rudin, Integral representation of continuous functions, Trans. Amer. Math. Soc. 68 (1950), 278–286. MR 34916, DOI 10.1090/S0002-9947-1950-0034916-8 S. Saks Theory of the integral, 2d rev. ed., Warsaw-Lwów, 1937.
- Laurent Schwartz, Théorie des distributions et transformation de Fourier, Analyse Harmonique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 15, Centre National de la Recherche Scientifique, Paris, 1949, pp. 1–8 (French). MR 0032815 —Théorie des distributions, vol. II, Actualités Scientifiques et Industrielles, no. 1122, 1951.
- J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Bull. Amer. Math. Soc. 35 (1929), no. 4, 499–544. MR 1561772, DOI 10.1090/S0002-9904-1929-04753-0 N. Wiener Laplacians and continuous linear functionals, Acta Szeged vol. 3 (1927) pp. 7-16. S. Zaremba Contribution à la théorie d’une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo vol. 19 (1905) pp. 140-150.
Bibliographic Information
- © Copyright 1953 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 75 (1953), 327-365
- MSC: Primary 31.0X
- DOI: https://doi.org/10.1090/S0002-9947-1953-0059416-3
- MathSciNet review: 0059416