Representations of semisimple Lie groups. II
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 76 (1954), 26-65
- DOI: https://doi.org/10.1090/S0002-9947-1954-0058604-0
- PDF | Request permission
References
- E. Cartan, Ann. École Norm. vol. 44 (1927).
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- Harish-Chandra, Representations of semisimple Lie groups. II, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 362–365. MR 42422, DOI 10.1073/pnas.37.6.362
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- George Daniel Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple groups, Bull. Amer. Math. Soc. 55 (1949), 969–980. MR 32656, DOI 10.1090/S0002-9904-1949-09325-4 A. Weil, L’intégration dans les groupes topologiques et ses applications, Paris, Hermann, 1940. H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395.
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 76 (1954), 26-65
- MSC: Primary 20.0X
- DOI: https://doi.org/10.1090/S0002-9947-1954-0058604-0
- MathSciNet review: 0058604