Generalized $n$th primitives
HTML articles powered by AMS MathViewer
- by R. D. James
- Trans. Amer. Math. Soc. 76 (1954), 149-176
- DOI: https://doi.org/10.1090/S0002-9947-1954-0060002-0
- PDF | Request permission
References
- J. C. Burkill, The CesĂ ro-Perron scale of integration, Proc. London Math. Soc. (2) vol. 39 (1935) pp. 541-552.
A. Denjoy, Sur l’intégration des coefficients différentiels d’ordre supérieur, Fund. Math. vol. 25 (1935) pp. 273-326.
- R. D. James and Walter H. Gage, A generalized integral, Trans. Roy. Soc. Canada Sect. III 40 (1946), 25–35. MR 21081
- R. D. James, A generalized integral. II, Canad. J. Math. 2 (1950), 297–306. MR 36344, DOI 10.4153/cjm-1950-027-4 S. Saks, On generalized derivatives, J. London Math. Soc. vol. 7 (1932) pp. 247-251. —, Theory of the integral, Warsaw, 1937.
- W. L. C. Sargent, A descriptive definition of Cesà ro-Perron integrals, Proc. London Math. Soc. (2) 47 (1941), 212–247. MR 5897, DOI 10.1112/plms/s2-47.1.212
- W. L. C. Sargent, On generalized derivatives and Cesà ro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365–376. MR 41199, DOI 10.1112/plms/s2-52.5.365
- František Wolf, On summable trigonometrical series: an extension of uniqueness theorems, Proc. London Math. Soc. 45 (1939), 328–356. MR 0001369, DOI 10.1112/plms/s2-45.1.328
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 76 (1954), 149-176
- MSC: Primary 27.2X
- DOI: https://doi.org/10.1090/S0002-9947-1954-0060002-0
- MathSciNet review: 0060002