Representations of semisimple Lie groups. III
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 76 (1954), 234-253
- DOI: https://doi.org/10.1090/S0002-9947-1954-0062747-5
- PDF | Request permission
References
- I. M. Gel′fand and M. A. Naĭmark, On the connection between the representations of a complex semi-simple Lie group and those of its maximal compact subgroups, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 225–228 (Russian). MR 0027279 —, Trudi Mat. Inst. Steklova vol. 36 (1950).
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math. (2) 51 (1950), 299–330. MR 33811, DOI 10.2307/1969326
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0 —, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 185-243.
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0 —, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) (a) pp. 170-173; (b) pp. 362-365; (c) pp. 366-369; (d) pp. 691-694.
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918 I. E. Segal, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 13-15.
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 76 (1954), 234-253
- MSC: Primary 20.0X
- DOI: https://doi.org/10.1090/S0002-9947-1954-0062747-5
- MathSciNet review: 0062747