The Plancherel formula for complex semisimple Lie groups
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 76 (1954), 485-528
- DOI: https://doi.org/10.1090/S0002-9947-1954-0063376-X
- PDF | Request permission
References
- C. Chevalley, Theory of Lie groups, Princeton University Press, 1946.
- Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785–793. MR 6544, DOI 10.2307/2371622 I. M. Gelfand and M. A. Naimark, Trudi Mat. Inst. Steklova vol. 36 (1950).
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Anthony W. Knapp and Peter E. Trapa, Representations of semisimple Lie groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 7–87. MR 1737726, DOI 10.1090/pcms/008/02
- Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S0002-9947-1954-0062747-5
- George Daniel Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple groups, Bull. Amer. Math. Soc. 55 (1949), 969–980. MR 32656, DOI 10.1090/S0002-9904-1949-09325-4
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918 A. Weil, L’Intégration dans les groupes topologiques et ses applications, Paris, Hermann. 1940. —, C. R. Acad. Sci. Paris vol. 200 (1935) p. 518. H. Weyl, The structure and representation of continuous groups, Princeton, The Institute for Advanced Study, 1935.
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 76 (1954), 485-528
- MSC: Primary 20.0X
- DOI: https://doi.org/10.1090/S0002-9947-1954-0063376-X
- MathSciNet review: 0063376