Some integralgeometric theorems
HTML articles powered by AMS MathViewer
- by Herbert Federer
- Trans. Amer. Math. Soc. 77 (1954), 238-261
- DOI: https://doi.org/10.1090/S0002-9947-1954-0063686-6
- PDF | Request permission
References
- A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110–120. MR 16448, DOI 10.1112/jlms/s1-20.2.110 S. Eilenberg On $\phi$ measures, Annales de la Société Polonaise de Mathématique vol. 17 (1938) pp. 252-253.
- Herbert Federer, Surface area. I, Trans. Amer. Math. Soc. 55 (1944), 420–437. MR 10610, DOI 10.1090/S0002-9947-1944-0010610-1
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441–466. MR 15466, DOI 10.1090/S0002-9947-1946-0015466-0
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR 22594, DOI 10.1090/S0002-9947-1947-0022594-3
- Herbert Federer, Dimension and measure, Trans. Amer. Math. Soc. 62 (1947), 536–547. MR 23325, DOI 10.1090/S0002-9947-1947-0023325-3
- H. Federer and A. P. Morse, Some properties of measurable functions, Bull. Amer. Math. Soc. 49 (1943), 270–277. MR 7916, DOI 10.1090/S0002-9904-1943-07896-2
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 77 (1954), 238-261
- MSC: Primary 52.0X
- DOI: https://doi.org/10.1090/S0002-9947-1954-0063686-6
- MathSciNet review: 0063686