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1. The fundamental ideas of the generalized Fourier transform have been

presented by S. Bochner [l; 2], for functions which are either locally inte-

grable or locally square integrable. A parallel line of thought has been fol-

lowed by N. Wiener [7] and H. R. Pitt [4] in their theory of generalized har-

monic analysis. While the parts of the Wiener theory which are connected

with the idea of the generalized Fourier transform do not treat functions

which are as large at infinity as those treated by Bochner, they do come

closer to giving a theory for Lp integrability than does Bochner (see [4]).

More recently L. Schwartz [5] has given a treatment of the generalized

Fourier transform by quite different methods.

One of the weak points of the theory has been the lack of satisfactory in-

version formulas, particularly for the generalized transform of order greater

than one. The main part of this paper is devoted to showing that by the use

of Abelian summability, the generalized Fourier transform may be inverted

in the metric of the proper function space.

The last part of the paper attempts to unify some of the ideas of general-

ized harmonic analysis and the generalized Fourier transform and to present

a generalization of a well known theorem of Titchmarsh ^6, Theorem 74]

The function space Lj, l^p< oo, consists of those functions for which

the norm

(1) (fl\fi*)\>d*+f     \f-^-\Pdx)llP=\\f\\

is finite. It is easily seen that this is a norm.

Let

1 .    ,

(2) Kk(x) =|*|* '    '

1, |-*| £ 1.

Then Lk„ consists of those functions for which the norm,

(3) ess sup   \f(x)Kk(x) \ = ||/||*,
— « <x<«

is finite.
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We say/ is uniformly continuous in L\ if /GZ,t and, given any e>0,

there is a 5i such that

(4) | /(* + 5) - /(*) | Kk(x) < e for all | 5 | < Si and all x.

It will be convenient to introduce a somewhat weaker topology in the

space L\ than that given by (3). We shall say/„(x) converges to/(x) in the u

topology of L\ as n—>°° if, given any h(x)^L°u

(5) lim   f    | f(x) - fn(x) | Kk(x)h(x)dx = 0.
!>->»   J -K

If

jfe—1 ft Jfc—2
<t> G iP   ,        1 < /> < oo,        Z,!,    or   ZM   ,

then it has a generalized £th Fourier transform defined by

£(*-*}=-&&LK w{eixt~Lk{u x)]dt where

(6) [«(«*)" |   -,
/ . -j | f | = 1,

Z,t(/, x) = •  „_o     «!

.0, /   > 1.

(The special case 1 <p^2 where functions in Z,*-1 have a generalized (k — 1)

Fourier transform will be treated in §3.)

2. The first problem is to invert (6.) The final inversion result is contained

in Theorem 3 which shows the inversion exists in the sense of the metrics

defined above.

Let

<t>,(s) =-(e - «)* I    E(k, x)ex<-'-uidx

-|-■ (- e - is)k I     £(*, x)eI<-'-i'^x.
(2*)1/2 J0

Theorem 1.

e   f1 *(*)<&

J_ C <Kt)    J (« - is)k (-«- w)M rf<
2tt J ki>i   ( — it)k \t — is + it       — t — is + it)

This can be proved by a direct if somewhat involved computation. One

need only substitute (6) in (7), interchange order of integration, and evaluate.
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Let

[ 1
-{(- t - is + it)(t - is)k

2e(-i)*1
(8)     H(s, t,t) = ,   ,

- (e- is+ it)(- e - is)"}    for | /1 > 1

.1 for | /1 ^ 1.

Then

rJ-„     (s-ty + s

Several lemmas will be useful in the proof of the inversion theorem.

Lemma 1. If <j>(t) GL$, 1 gp < oo, then

(10) t(u) =  f    | [«(0 - <*>(« + t)]Kk(t) \'dt
J —x,

is a continuous function of u and r(0) =0.

Proof. This is an easy generalization of the classical theorem k = 0 (see

[2, p. 98]).

Lemma 2.

<      ± f°°  B(s, e, t)Kk(t)dt

~   v J-„      (s-t)* + e*

Proof. We need only show that if <j>(t)=l, then ^,(j)sl. If we take the 1st

generalized transform 22(1, x) of <f>(t) = l we find

/7r\1/2
£(1> *)  = I -J )     sgn x.

Computing <p,(s) for this we find

1       /•"
0«(j) =- I    e-"*e-'MdE(l, x) = 1.

(2^-)1'2J_„ '

Integrating by parts k times, equation (7) is obtained with <j>t(s) = l. The

use of Theorem 1 then proves the lemma.

Lemma 3. Suppose \K(x)\ <c/(1+x2) and g(t)=J1aiK(x)f(t-x)dx. Then

(a) | /(*) | < ' implies    \ g(t) | <        *\       ,
1 + 1*1* i + M
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, C . . C\
(b) f(x)   < ——-.—r    implies    \ g(t) \ < ,   , >

1 + I x\ l + I l\

(c) (1 + | x |)/(x) G 4    implies    (1 + \t \ )g(t) G 4> K /> = °° •

Proof. In (a) and (b) assume />0. The proof for /<0 is, of course, the

same.

(a) | g(t) | g  f      | /(/ - x) | | K(x) \dx+ f    | /(/-*) | | K(x) | dx

/"2                  C                 .               .                  rX ,                       .          Co-j-r    P(x) \dx +   I /(/  -   X)      - rfx
_      1 +|/-  x|2'               '               J«/2                               1 + X2

< n-:- I     I K(x) I rfx + -|-1-    I     I f(x) I <2x
~   |*/2|2+1 J_J     W| |i/2|2+l    J_M' '

Ci

=   l+|i|2 '

(b) |g«| ^ f"2|/(*-*)| | F(x)|rfx

/•-, ,    co    i/2   co    i/2

+ /(*-*)    -        -      dx
J tit 1 + X2 1 + X2

< I       -r-:-  P(x)   rfx
J_M    | x-t\ + 1

\J i/l 1 + X2 /       \JI/S   1 + X2       /

< -i-1- I      I K(x) I rfx

+ (TTfe)"'(/j^l-)"!(/:i^4"
< Cl       ■

"  1 + 1*1

(c) We use the well known fact that the convolution of a function in L°

and a function in L\ is also in L\. Therefore

/o K(x)(t — x)f(t — x)dx is in Z-j,.
-00

Since we wish to show
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/o K(x)f(t — x)dx is in Lp,
-oo

it is only necessary to show

f °° .   .     o
I     K(x)xf(t — x)dx is in Lp.

"   -CO

This follows immediately from the fact that xK(x)E.Lp, Kp= oo, and

that/(x)G2,1 if p< oo. If p= oo the result follows from (b).

Theorem 2. (a) 1/<£££,*, then <pc^L\.

(b) 7/^EiJ-1, Kp<oo,/A«,0,GiJ-1.
(c) If<p<ELl-2,thentpfELkJ2.

Proof. Note that under the various hypotheses E(k, x) exists so that it is

permissible to use the form of <j>((s) given in Theorem 1.

(a) An inspection of H(s, e, t) shows that it satisfies

| H(s, t, t) | = R(e)( \s\k + \ P1(s, e) | + | 11 | s I*-1 + f 11 | /»,(*, e) |)

^Ri(e)(\s\k + \t\\s\«-i+\)

where R and R\ are continuous functions of e, Pi(s, e) are polynomials in

e and s with the highest power of 5 in Pi being k — 1 and in P2 being k — 2.

From (9) we obtain

,rM    .,,       I «   f °° *(')#(*. «. t)Kk(t)Kk(s)dt
I **(*)*•« I =  — I     -:-XT—2-

I   7T  J-,, (s  —   ty + £2

=    T ^tJ^" (*-<)2  +  «2

C*   \<t>(t)\\t\\s\k-xKk(t)Kk(s)dt

J-x (s-ty + e*

/•-   I 0(QJ Kk(t)Kk(s)   J

J_M (5-/)2 + €2 7"

The first of these integrals £L" since |j| *2ft(s) ^ 1 and <t>(t)Kk(t)GLl. The

second integral G2/° since if we integrate and interchange order of integration

we get

/".     11 i         r°° Kk(s)\sI*-x0(0    * if*(/)*       -—— <fc
-co'    "  '          J-„ (s-ty + s

and by part (b) .of Lemma 3, the inner integral is ^c/(l + |/|). It is trivial

to show the third integral ££".

(b) Using*(ll)jve obtain
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Kk^(s)<t,,(s)    =g - Flve) ^ J- -
IT I -'-oo (5  —  0     + «

r   \ ^)\\ l\\ s\k-1Kk(t)Kk^1(s)dl

(13) +J-oo (5-02 + e2

/•-  \<t>(t)\Kk(l)Kk(s)dt\

+ J_M        (5-02 + e2       /"

The first integral   E.L% by  (c)  of Lemma  3  since   \t\</>(t)Kk(t)E.L°p. The

second integral  G£° since  |*[»-yrM(»£l   and   |0(*)| |/|f:*(0GLp. The

third integral is trivial,

(c) We have

I JCh^/j) I g — Pi(/) <- -
7r W-00 (5 — /)2 + e2

(14) +J-M-(5 - ty + e2-

/•-   \<j>(t)\Kk(t)Kk^2(s)dt\

+ J_M (5-/)2 + e2        /'

The first integral is bounded by (a) of Lemma3since \<t>(t)\Kk(t)<c/'(1-H2).

The second integral is bounded by (b) of Lemma 3, and the third integral is

obviously also bounded. Q.E.D.

Theorem 3. (a) If <f>GLk, then

lim \\$c(s) - <K5)||*, 1 = 0.

(b) J/^eiJ-1. Kp<™,then

lim ||*.(j) - 0(5)||*_i.p = 0.
«-»o

(c) If <f>(E.LkJ2 'Aew ^^(s) converges to <f>(s) in the w topology of Z-t-2.

(d) Z/ 0 w uniformly continuous in Lk^2, then

lim||0.(5) - 0(5)||*_,.«, = 0.
t-H)

Proof. By Lemma 2

e   f -   I 0(5) - 0(0 I I E(s, €, 0 I Kk(t)dl
4>(s) - 0,(5)    £ --——-■

T  J_oo (5  —  0     + «2

"-{/ + / }-* + *■IT    W  |«-<|<S J  \t-t\>V
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Suppose, for the moment, that S has been selected. Then as in Theorem 2,

ir  \J |._(|>j (s — ty

f \<t>(s) - <t>(t)\\s\k-l\t\Kk(t)dl

J i.-<i>« (s - ty

_ r        10(5) - 0(01 Kk(t)dt \

J |8-(|>8 (* —  0* /

Note that the expression in the bracket is independent of e.

(15) |/,|  £*!«—$(*).
IT

If 0£2^i, then by the same proof as appears in Theorem 2, Kk(s)S(s)£2,*.

If 0£Z,£~\ Kp<oo, then so does Kk-i(s)S(s), and if <j>GLkJ2, then

2Ca_2(s).S(s) does also. Therefore by choosing e sufficiently small we can make

I Ji I arbitrarily small in the proper metric.

We need only show that we may select S, independently of e, so that | Ji|

is arbitrarily small in the proper metric.

(a) Suppose 0GLj.

tit ,s       e   CS I *W -*(*-«) I I #(5' «.*-«)! K*(s ~ u)Kk(s)du
AKk(s) = —       -——-.

■k J _j «2 + e2

Then

max    I H(s, e, s — «) | i£i(s — m) ^ c,
-S<«<5

so that

€C     C 5 </w /* °°
JiKk(s)ds 2= — ——- I 0(5) - <b(s - u) I 2Cfc(s)<fc

X  J _J    W2 + €2 J _M

ec                          f"°du
^ —■   max    t(m) I      —- = c   max   t(u).

IT   -«<«<{ ♦'-co  w2 + e2 -«<«<«

By Lemma 1 this goes to zero as S—>0.

(b) Suppose 0G2/*-1.

«   T5   I *W - 0(* - «) I I B(s, e,s- u) I Kk(s - u)Kk_x(s)du
JlKk-!(s)  = —  I-——-

7T  J _J M2 +  £2

tc    r"   . . 1 X/P 1 ''P'
g —I        I 0(5)   - 0(5 -  «) I /C4_!(5)   —— -—— du.

it J _{ u2 + «2 u1 + «2
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| /iP*-i(5) |" ^ —   f      |  (0(5)   - 0(5 -  M))ivVl(5) I"- du
Xp    J s M2 + 62

a5        du    \p'p'
.,    M2 + €2/

/".              .         e"cp / r°°    du  \"
I JiKk-i(s) \pds ^ -1   I      -)   max   t(u) = c"   max   r(«).

-„                                      xp   \«/_oo M2 + e2/ -«<«<a -a<«<a

By Lemma 1 this goes to zero as 5—>0.

(c) Suppose 0G£«~2. Let/(5)G-£<i. As in part (a)

/°° tc   rs      du     r°° , ,
J1Kk_2(s)f(s)ds ^ — —— I 0(5) - 0(5 - «) I Kk-S(s)f(s)ds

-00 f J-j  «' + (•'-00

/oo I 0(5) — 0(5 — u) I Kk-i(s)f(s)ds
-00

and the integral can be made arbitrarily small by proper selection of 5.

(d) If 0 is uniformly continuous in Lk~2, then

1 1       (C 1 1 fs       du
I J1 Kk_2(s) I g —   max    I 0(5) - 0(5 - u) I P*_2(5) I      ———-

x  -s<u<s J-1   u2 + e

^ c   max    I 0(5) — 0(5 — u) I Kk-2(s)
-s<u<s

and this can be made arbitrarily small by proper selection of 5 by the defini-

tion of uniform continuity in Lk~2. Q.E.D.

3. A theorem of the Hausdorfif-Young type. It is a well known result due

to Titchmarsh that iif(x)E.L%, 1<£^2, then

£(0' *> = TT^i llmy   (  ei"M)dt> T + v = !-
(27T)1'2   X-.» J -A P P

exists and

a 00 x l/p' j /    /» 00 x l/p

(See [6, Theorem 74].)

This theorem has a direct generalization to the case k>0 which can

easily be proved using the Riesz Theorem on interpolation of linear operators.

Recently a generalization of this theorem with an elegant proof has been

presented by Calderon and Zygmund [8]. Their result is as follows:

Theorem. Let Ei and E2 be two measure spaces, with measures jjl and v

respectively. Let T be a normed linear operation defined for all simple functions
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f on Ei. Suppose that T is simultaneously of the types (1/ai,  1/Bi) and

(l/a2, l//32), i.e., that

\\Tf\\Wl £ Mi\\f\\i,ai,       \\Tf\\1W2^M2\\f\\i/ai,

the points (ai, /Si), (a2, /32) belonging to the square

0 g |8 g 1,        0 g « g 1.

Fftew F 15 a/50 o/ /ype (1/a, 1/(3) /or aZZ

a = ai(l — <) + a2t,
0 <t <1,

p = mi - 0 + pV,

(16) ||r/||I/)i^jfl",jf3|y||i,«.

Zw particular, if a^O, the operation T can be uniquely extended to the whole

space L°1/a (with measure ft), preserving (16).

In the above stated theorem

(17) ll/l|r = (/,   I'l'**)1"'

(18) I|27||. = (J    \Tf\'d,y.

Let H(x)eHp, 2^p'^ oo, ii

(a) dkH/dxk = h(x) exists and

(b) h(x) is the Fourier transform of a function of Lp which vanishes out-

side the interval ( — 1, 1).

Let g(x) GGP', 2 ^p' g= oo, if g(x) is the Fourier transform of a function of

L°p which vanishes in the interval ( —1, 1).

Note that g and h each belong to L%>.

Let £*' =HP'+GP' be the sum of the two spaces, i.e., the space formed by

pairs of the form (H+g) where H(E.IIk> and g^Gp>. For a function /GP*',

the decomposition into the form H+g is unique and we may define a norm

in E*p. by

/     ,,00 1   dkH lp'        Xl/p'

(19) ||/||*.p' = (J     |—+ *    dx) iov2^p'<co

and

(20) ||/||*.- = sup  -j^- + g ■
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If we observe the form of the generalized Fourier transform (6), and the

Titchmarsh theorem, then it becomes evident that for 0(*)£Z*, Kp^2,

it is possible to define a £th generalized Fourier transform by

i    r f1   0(0 ,
E(k,x)=-    I-   e"< - Lk(t, *)\dl(2x)»*LJ-,   (it)kX n

r        0(0      "l
+ l.i.m."'   I -^e"'dt\,

A->«        J i<\t\<A    (U)k J

and that the relation between this and the fe + 1 generalized Fourier trans-

form previously defined is

d
(22) — E(k + 1, *) = E(k, *).

dx

In equation (7), an integration by parts may now be carried out so that

for 0£Lp_1, Kp^2, the inversion formula may be expressed in terms of

the E(k-1, *) defined in (21).

From equation (21) it is seen that the space of all &th generalized trans-

forms for functions in Lp, 1 <p^2, is exactly the space EP>. The purpose of

the next theorem is to show that this is a bounded transformation and in the

case p = 2 is an isometric transformation.

Theorem 4. Let <f>ELl, 1<^2; then

llE{k'x%Kv' - (2Ji^Mi)h-'

the equality holding if p = 2.

Proof. By the Riesz Theorem it is necessary to investigate only the cases

p = \ and p = 2.

If 0GZ.J, then E(k, x) is defined by

1       T1 '0(0   i
E(k, x) =- I      - \eixt - Lk(l, x)\dt

(27T)1'2J_l    (it)k   ' '

1       C 0(0
+- -eix'dl = H(x) + g(x),

(2x)WM1>1   (it)*

dkH(x) i   i rl r      0(0
-_ + g(x)   =-   I    <p(t)eixtdt +  I -—~eixtdt

dxk S' (2x)1'2|J_i Jm>,   (it)"

i    r°° i     , i   n M
^- I        0(0   Kk(t)dt = -   0 Li.

(2*yi*J-J     ' (2X)1'2" "
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If 0GZ-2, the second integral of (23) is defined as a limit in mean, so by

Plancherel's theorem

/" I dkH  2 r°° cx
-—   dx= I     \h(x)\Hx= \<p(t)\Ht

-ool   dx" J _„o J -I

and

/" i i C      \ 0(0   2|g(*)|'«f* =  I        \^~   dt.
-oo ^   |«|>ll       "

The equalities

\\E(k, *)H*.2=( jm i *(*)+g(*) iv*y/s

=(fli0(oi^+r i^-mi/2=ii0ii*.2
W-i J m>i i  <*  i    /

follow from

f   g(*)A(T)rf* = 0,

which is a consequence of Parseval's equality. An application of the Riesz

Theorem now finishes the proof.
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