Analytic functions of class $H_ p$
HTML articles powered by AMS MathViewer
- by Walter Rudin
- Trans. Amer. Math. Soc. 78 (1955), 46-66
- DOI: https://doi.org/10.1090/S0002-9947-1955-0067993-3
- PDF | Request permission
References
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108
- Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101–129. MR 36841, DOI 10.1007/BF02392634
- Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439, DOI 10.1090/surv/005
- H. F. Bohnenblust and A. Sobczyk, Extensions of functionals on complex linear spaces, Bull. Amer. Math. Soc. 44 (1938), no. 2, 91–93. MR 1563688, DOI 10.1090/S0002-9904-1938-06691-8 Marcel Brelot, Étude des fonctions sousharmoniques au voisinage d’un point, Paris, 1934. Constantin Carathéodory, Conformal representation, Cambridge, 1932.
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- P. R. Garabedian, Schwarz’s lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1–35. MR 32747, DOI 10.1090/S0002-9947-1949-0032747-8
- P. R. Garabedian, The classes $L_p$ and conformal mapping, Trans. Amer. Math. Soc. 69 (1950), 392–415. MR 39072, DOI 10.1090/S0002-9947-1950-0039072-8 G. H. Hardy, On the mean modulus of an analytic function, Proc. London Math. Soc. vol. 14 (1915) pp. 269-277.
- A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of analytic functions, Acta Math. 82 (1950), 275–325. MR 36314, DOI 10.1007/BF02398280
- Zeev Nehari, On bounded analytic functions, Proc. Amer. Math. Soc. 1 (1950), 268–275. MR 34457, DOI 10.1090/S0002-9939-1950-0034457-3 Rolf Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
- M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103–197 (1952) (French). MR 50023, DOI 10.5802/aif.37
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3 Tibor Radó, Subharmonic functions, Berlin, 1937.
- Freidrich Riesz, Über die Randwerte einer analytischen Funktion, Math. Z. 18 (1923), no. 1, 87–95 (German). MR 1544621, DOI 10.1007/BF01192397
- Frédéric Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta Math. 54 (1930), no. 1, 321–360 (French). MR 1555311, DOI 10.1007/BF02547526
- W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. 90 (1953), 287–318. MR 59354, DOI 10.1007/BF02392438
- J. L. Walsh, The Location of Critical Points of Analytic and Harmonic Functions, American Mathematical Society Colloquium Publications, Vol. 34, American Mathematical Society, New York, N. Y., 1950. MR 0037350, DOI 10.1090/coll/034
- Stanley S. Walters, The space $H^p$ with $0 < p < 1$, Proc. Amer. Math. Soc. 1 (1950), 800–805. MR 39920, DOI 10.1090/S0002-9939-1950-0039920-7 Antoni Zygmund, Trigonometrical series, Warsaw, 1935.
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 78 (1955), 46-66
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9947-1955-0067993-3
- MathSciNet review: 0067993