Additive polynomials. II
HTML articles powered by AMS MathViewer
- by T. H. M. Crampton and G. Whaples
- Trans. Amer. Math. Soc. 78 (1955), 239-252
- DOI: https://doi.org/10.1090/S0002-9947-1955-0073648-1
- PDF | Request permission
References
- Emil Artin, Linear mappings and the existence of a normal basis, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 1–5. MR 0022837
- H. T. Engstrom, Polynomial substitutions, Amer. J. Math. 63 (1941), 249–255. MR 3599, DOI 10.2307/2371520 K. Hensel, Zahlentheorie, Berlin and Leipzig, Goeschen, 1913.
- Irving Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575–580. MR 25451, DOI 10.1090/S0002-9904-1948-09049-8
- Howard Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer. J. Math. 64 (1942), 389–400. MR 6162, DOI 10.2307/2371692
- Oystein Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933), no. 3, 559–584. MR 1501703, DOI 10.1090/S0002-9947-1933-1501703-0
- J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), no. 1, 51–66. MR 1501189, DOI 10.1090/S0002-9947-1922-1501189-9
- G. Whaples, Additive polynomials, Duke Math. J. 21 (1954), 55–65. MR 73647
- G. Whaples, Generalized local class field theory. I. Reciprocity law, Duke Math. J. 19 (1952), 505–517. MR 49236
- G. Whaples, Generalized local class field theory. II. Existence theorem, Duke Math. J. 21 (1954), 247–255. MR 73644
- G. Whaples, Existence of generalized local class fields, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1100–1103. MR 59961, DOI 10.1073/pnas.39.10.1100
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 78 (1955), 239-252
- MSC: Primary 10.2X
- DOI: https://doi.org/10.1090/S0002-9947-1955-0073648-1
- MathSciNet review: 0073648