A characterization of tame curves in three-space
HTML articles powered by AMS MathViewer
- by O. G. Harrold, H. C. Griffith and E. E. Posey
- Trans. Amer. Math. Soc. 79 (1955), 12-34
- DOI: https://doi.org/10.1090/S0002-9947-1955-0091457-4
- PDF | Request permission
References
- J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. vol. 10 (1924) pp. 6-8.
P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.
L. Antoine, Sur la possibilite d’entendre l’homeomorphisme de deux figures a leur voisinage, C. R. Acad. Sci. Paris vol. 171 (1920) pp. 661-663.
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145–158. MR 61377, DOI 10.2307/1969836
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI 10.2307/1969408
- W. Graeub, Die semilinearen Abbildungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1950 (1950), 205–272 (German). MR 0042709
- O. G. Harrold Jr. and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2) 57 (1953), 575–578. MR 53504, DOI 10.2307/1969738
- O. G. Harrold Jr., The enclosing of simple arcs and curves by polyhedra, Duke Math. J. 21 (1954), 615–621. MR 68208
- Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, DOI 10.2307/1969769
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159–170. MR 61822, DOI 10.2307/1969837
- A. Schoenflies, Bemerkung zu dem vorstehenden aufsatz des Herrn L. E. J. Brouwer, Math. Ann. 68 (1910), no. 3, 435–444 (German). MR 1511571, DOI 10.1007/BF01475782
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 79 (1955), 12-34
- MSC: Primary 54.0X
- DOI: https://doi.org/10.1090/S0002-9947-1955-0091457-4
- MathSciNet review: 0091457