Galois theory of continuous transformation rings
HTML articles powered by AMS MathViewer
- by Alex Rosenberg and Daniel Zelinsky
- Trans. Amer. Math. Soc. 79 (1955), 429-452
- DOI: https://doi.org/10.1090/S0002-9947-1955-0072121-4
- PDF | Request permission
References
- Emil Artin, Galois Theory, Notre Dame Mathematical Lectures, no. 2, University of Notre Dame, Notre Dame, Ind., 1942. Edited and supplemented with a section on applications by Arthur N. Milgram. MR 0006974
- Emil Artin and George Whaples, The theory of simple rings, Amer. J. Math. 65 (1943), 87–107. MR 7391, DOI 10.2307/2371775
- Henri Cartan, Théorie de Galois pour les corps non commutatifs, Ann. Sci. École Norm. Sup. (3) 64 (1947), 59–77 (French). MR 0023237
- Jean Dieudonné, Sur le socle d’un anneau et les anneaux simples infinis, Bull. Soc. Math. France 70 (1942), 46–75 (French). MR 11289
- Jean Dieudonné, La théorie de Galois des anneaux simples et semi-simples, Comment. Math. Helv. 21 (1948), 154–184 (French). MR 24892, DOI 10.1007/BF02568032
- G. Hochschild, Automorphisms of simple algebras, Trans. Amer. Math. Soc. 69 (1950), 292–301. MR 37834, DOI 10.1090/S0002-9947-1950-0037834-4
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601
- N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300–320. MR 12271, DOI 10.2307/2371731
- N. Jacobson, A note on division rings, Amer. J. Math. 69 (1947), 27–36. MR 20981, DOI 10.2307/2371651
- N. Jacobson, On the theory of primitive rings, Ann. of Math. (2) 48 (1947), 8–21. MR 19591, DOI 10.2307/1969211 —, Lectures in abstract algebra, vol. 2, New York, 1953.
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- Irving Kaplansky, Topological representation of algebras. II, Trans. Amer. Math. Soc. 68 (1950), 62–75. MR 32612, DOI 10.1090/S0002-9947-1950-0032612-4
- Wolfgang Krull, Zur Theorie der allgemeinen Zahlringe, Math. Ann. 99 (1928), no. 1, 51–70 (German). MR 1512438, DOI 10.1007/BF01459085
- Tadasi Nakayama, Galois theory of simple rings, Trans. Amer. Math. Soc. 73 (1952), 276–292. MR 49875, DOI 10.1090/S0002-9947-1952-0049875-3
- Alex Rosenberg, Finite-dimensional simple subalgebras of the ring of all continuous linear transformations, Math. Z. 61 (1954), 150–159. MR 66368, DOI 10.1007/BF01181339 B. L. Van der Waerden, Moderne Algebra, vol. 2, Berlin, 1940.
- Daniel Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627–630. MR 62728, DOI 10.1090/S0002-9939-1954-0062728-7
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 79 (1955), 429-452
- MSC: Primary 09.3X
- DOI: https://doi.org/10.1090/S0002-9947-1955-0072121-4
- MathSciNet review: 0072121