Functions typically-real and meromorphic in the unit circle
HTML articles powered by AMS MathViewer
- by A. W. Goodman
- Trans. Amer. Math. Soc. 81 (1956), 92-105
- DOI: https://doi.org/10.1090/S0002-9947-1956-0075299-2
- PDF | Request permission
References
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883 —, Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo vol. 32 (1911) pp. 193-217. L. R. Ford, Automorphic functions, New York, McGraw-Hill, 1929.
- S. A. Gel′fer, On coefficients of typically real functions, Doklady Akad. Nauk SSSR (N.S.) 94 (1954), 373–376 (Russian). MR 0061173
- G. M. Goluzin, On typically real functions, Mat. Sbornik N.S. 27(69) (1950), 201–218 (Russian). MR 0039060
- A. W. Goodman and M. S. Robertson, A class of multivalent functions, Trans. Amer. Math. Soc. 70 (1951), 127–136. MR 40430, DOI 10.1090/S0002-9947-1951-0040430-7 G. Herglotz, Über Potenzreihen mit positivem, reellen Teil im Einheitskreis, Ber. Verh. Sächs. Akad. Wiss., Leipzig, 1911, pp. 501-511.
- Yûsaku Komatu, Note on the theory of conformal representation by meromorphic functions. I, Proc. Japan Acad. 21 (1945), 269–277 (1949). MR 31564
- Konrad Ladegast, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 58 (1953), 115–159 (German). MR 56090, DOI 10.1007/BF01174136
- En Pir Li, On typically real functions on a circular ring, Doklady Akad. Nauk SSSR (N.S.) 92 (1953), 699–702 (Russian). MR 0059358
- Zeev Nehari and Binyamin Schwarz, On the coefficients of univalent Laurent series, Proc. Amer. Math. Soc. 5 (1954), 212–217. MR 61172, DOI 10.1090/S0002-9939-1954-0061172-6
- M. S. Robertson, On the coefficients of a typically-real function, Bull. Amer. Math. Soc. 41 (1935), no. 8, 565–572. MR 1563142, DOI 10.1090/S0002-9904-1935-06147-6
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51
- M. S. Robertson, The coefficients of univalent functions, Bull. Amer. Math. Soc. 51 (1945), 733–738. MR 13416, DOI 10.1090/S0002-9904-1945-08434-1
- Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93–121 (German). MR 1545292, DOI 10.1007/BF01186552
- Eugene P. Wigner, On a class of analytic functions from the quantum theory of collisions, Ann. of Math. (2) 53 (1951), 36–67. MR 39059, DOI 10.2307/1969342
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 92-105
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0075299-2
- MathSciNet review: 0075299