On strong bounds for sums of independent random variables which tend to a stable distribution
HTML articles powered by AMS MathViewer
- by Miriam Lipschutz
- Trans. Amer. Math. Soc. 81 (1956), 135-154
- DOI: https://doi.org/10.1090/S0002-9947-1956-0077015-7
- PDF | Request permission
References
- W. Doeblin, Sur l’ensemble de puissances d’une loi de probabilité, Studia Math. 9 (1940), 71–96 (French, with Ukrainian summary). MR 5541, DOI 10.4064/sm-9-1-71-96 M. Lipschutz, On the magnitude of the error in the approach to stable distributions, available in mimeographed form from the Department of Mathematical Statistics, Columbia University. To be submitted for publication.
- William Feller, Fluctuation theory of recurrent events, Trans. Amer. Math. Soc. 67 (1949), 98–119. MR 32114, DOI 10.1090/S0002-9947-1949-0032114-7
- W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 (1946), 257–262. MR 16569, DOI 10.2307/2371837 J. Marcinkiewicz, Quelques théorèmes de la théorie des probabilités, Bulletin du Séminaire Mathématique de l’Université Wilno vol. 2 (1939) p. 22. P. Lévy, Sur les séries dont les termes sont des variables éventuelles indépendantes, Studia Mathematica vol. 3 (1931) p. 117.
- K. L. Chung and G. A. Hunt, On the zeros of $\sum ^n_1\pm 1$, Ann. of Math. (2) 50 (1949), 385–400. MR 29488, DOI 10.2307/1969462
- Miriam Lipschutz, On strong laws for certain types of events connected with sums of independent random variables, Ann. of Math. (2) 57 (1953), 318–330. MR 56225, DOI 10.2307/1969862
- W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), 373–402. MR 9263, DOI 10.1090/S0002-9947-1943-0009263-7
- K. L. Chung and P. Erdös, On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc. 72 (1952), 179–186. MR 45327, DOI 10.1090/S0002-9947-1952-0045327-5
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 135-154
- MSC: Primary 60.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0077015-7
- MathSciNet review: 0077015