The symmetric derivative on the $(k-1)$-dimensional hypersphere
HTML articles powered by AMS MathViewer
- by Victor L. Shapiro
- Trans. Amer. Math. Soc. 81 (1956), 514-524
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076906-0
- PDF | Request permission
References
- K. K. Chen, On the Cesàro-summability of the Laplace’s series of hyperspherical functions, The Science Reports of the Tôhoku Imperial University vol. 17 (1928) pp. 1073-1089.
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 1, New York, 1953.
—, Higher transcendental functions, vol. 2, New York, 1953.
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 G. H. Hardy and J. E. Littlewood, Abel’s theorem and its converse, Proc. London Math. Soc. vol. 18 (1920) pp. 205-235. E. Kogbetliantz, Recherches sur la sommabilité des séries ultraspheriques par la méthod des moyennes arithmetiques, Jour. de Math. vol. 3 (1924) pp. 107-187. G. Szegö, Orthogonal polynomials, New York, 1939. A. Zygmund, Trigonometrical series, Warsaw, 1935.
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 514-524
- MSC: Primary 42.1X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076906-0
- MathSciNet review: 0076906