The symmetric derivative on the $(k-1)$-dimensional hypersphere
HTML articles powered by AMS MathViewer
- by Victor L. Shapiro
- Trans. Amer. Math. Soc. 81 (1956), 514-524
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076906-0
- PDF | Request permission
References
- K. K. Chen, On the CesĂ ro-summability of the Laplaceâs series of hyperspherical functions, The Science Reports of the TĂŽhoku Imperial University vol. 17 (1928) pp. 1073-1089.
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 1, New York, 1953.
â, Higher transcendental functions, vol. 2, New York, 1953.
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 G. H. Hardy and J. E. Littlewood, Abelâs theorem and its converse, Proc. London Math. Soc. vol. 18 (1920) pp. 205-235. E. Kogbetliantz, Recherches sur la sommabilitĂ© des sĂ©ries ultraspheriques par la mĂ©thod des moyennes arithmetiques, Jour. de Math. vol. 3 (1924) pp. 107-187. G. Szegö, Orthogonal polynomials, New York, 1939. A. Zygmund, Trigonometrical series, Warsaw, 1935.
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 514-524
- MSC: Primary 42.1X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076906-0
- MathSciNet review: 0076906